LNF SuperB Collaboration Meeting PID Parallel session Mar. 21 ${ }^{\text {th }} 2012$

Update on FDIRC full simulation

Alejandro Pérez
INFN - Sezione di Pisa

LNF Superi Collaboration Meeting

Outline

a The new beam-gas sample
a Beam-gas background rates on the FDRIC
a FDIRC shield studies
a Summary

Beam-gas HER sample

a 285k primaries (losses) from beam gas HER backgrounds
a Total rate around the IP of 3.8 MHz (Touschek-LER 58MHz)
a Run this sample with the code used for the Dec Production
\Rightarrow No FDIRC shield is included!

Bkg rates on the FDIRC: Strategy (I)

a Use same sector labelling as in BABAR
a Determine the photo-electron (p.e.) rates per pixel (see next slide) for every sector and for all available background sources
a Use a "local" coordinate system in the instrumented plane: $X_{\text {local }}$ vs $Y_{\text {local }}$

Bkg rates on the FDIRC: Strategy (II)

a Study the pixel rate for different regions were the tracks hit the quartz bar:

- (a) Inside magnet: $-160<Z<220 \mathrm{~cm}$
- (b) Within steel: $-280<Z<-160 \mathrm{~cm}$
- (c) Outside magnet: $-280<Z<-400 \mathrm{~cm}$
a If main contribution comes from outside magnet
\Rightarrow can reduce backgrounds by increasing shields

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011

Bkg rates on the FDIRC: Pixel map

a For each sector have an array $8 \times 6=48$ photo-detectors
a. Each detector is an $8 \times 8=64$ array of PMTs (pixels) with $\sim 6.08 \mathrm{~mm}$ pitch

Group 2 channels into one $=32$ channels

```
pixel map w.r.t local coordinates
```


FDIRC Bkg rates from Beam-gas HER (I)

Sector 6

Inside Magnet

Outside Magnet

Within Steel

Total Rate

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011

FDIRC Bkg rates from Beam-gas HER (II)

Total bkg rates on FDIRC

Total Rate per sector

Total bkg rates on FDIRC

Rad-bhabha is still the main background source on FDIRC by at least one order of magnitude!

FDIRC Bkg rates from Radl-Bhabha

Total Rate per sector

Particle flux studies (I)

a Study the flux of particles through interesting regions of the the FDIRC mother boundary (magenta and green regions)
a Try to understand the nature of the particles crossing those boundaries (PID and spectrum)

Particle flux studies (II)

Particle flux studies (III)

Momentum (MeV/c)
1DI parallel session Mar 20th 2012

Particle flux studies (VI)

a Incident angle:

- $\theta=0$ means normal incidence
- $\theta>0$ means particles coming more or less from the IP
a Most of the particles have a notnormal incidence

Lead shield optimization studies (I)

a Shot particles $\left(\mathrm{e}^{ \pm}, \gamma, \mathrm{n}^{0}\right)$ at normal incidence on Lead for

- Different lead thickness: $5-20 \mathrm{~cm}$ (1cm steps)
- Different incident energies: $50-200 \mathrm{MeV}$ (50MeV steps)
a Study the particle multiplicity and spectrum at the other end of the shield
a Optimization: thickness for which the probability to have more than one particle on the other side of the shield is lower than 10\%

Probability(Multiplicity >0) $\leq 10 \%$

Lead with different thickness

Lead shield optimization studies (II)

Incident photons

Total Average multiplicity vs Shield Thickness

Total Prob(Multiplicity >0) vs Shield Thickness

a Multiplicity at the other end of the lead shield due mainly to photons and electrons/positrons (very small contribution from neutrons)
a Higher the energy of the incident photon, thicker must be the lead shield

Lead shield optimization studies (II)

Incident photons

Total Average multiplicity vs Shield Thickness

Optimal Thickness for Prob(Mul. >0) $=10 \%$ vs Energy

a Multiplicity at the other end of the lead shield due mainly to photons and electrons/positrons (very small contribution from neutrons)
a Higher the energy of the incident photon, thicker must be the lead shield
a In order to reduce the photon flux by a factor of 10 for photons up to 150 MeV , the lead shield thickness needs to be 14.4 cm

Lead shield optimization studies (III)

Incident neutrons

(neutron multiplication)

Average multiplicity vs Shield thickness

Spectrum of n^{0} for scoring at $Z=14.0 \mathrm{~cm}$

a Incident neutrons with kinetic energies from $\mathbf{5 0}$ to $\mathbf{2 0 0} \mathbf{~ M e V}$ get multiplied by a factor of $\sim \mathbf{2 . 3}$ for lead thickness of $\mathbf{1 4 c m}$
a The kinetic energy spectrum of those neutrons has a slight variation with the incident neutron kinetic energy
a Outgoing neutrons have a significant amount of kinetic energy ($10-70 \mathrm{MeV}$)
\Rightarrow Add a Boron-loaded (5\%) polyethylene shield
Alejandro Pérez, LNF SuperB Collaboration meeting, MDI parallel session Mar 20th 2012

FDIRC shield: BRN implementation

a Steel-lead-steel sandwich (2.5-10-2.5 cm $)$
a Boron-loaded (5\%) polyethylene (10 cm)

FDIRC shield: BRN implementation

a Steel-lead-steel sandwich (2.5-10-2.5 cm $)$
a Boron-loaded (5\%) polyethylene (10 cm)

Summary

a Beam-gas HER of the same order as Touschek LER

- The main machine background contribution on the FDIRC is due to Radbhabha, mainly from tracks hitting the quartz bar in the FBLOCK region
a Main flux of particles on FBLOCK are photons with energy lower than 200MeV
a Shields:
- Lead thickness of 14 cm can reduce the background by a factor of ~ 10. Shield BRN implementation: steel-lead-steel (2.5-10-2.5 cm) sandwich
- Neutrons:
. Neutron multiplication by a factor ~ 2.2 for lead shield thickness of 14 cm
, Will add a Boron-loaded polyethylene shield (10 cm)
a FEE:
- FEE boards implemented and instrumented by Riccardo
- Ready to study the doses and neutron fluxes
a FullSim code will freeze in 2 weeks from now.
a FullSim production is expected to start in 3 weeks from now.

FDIRC implementation inside BRN (l)

a Previously:

- Only a standalone model of FDIRC (Doug Roberts)
- In Bruno:
, Only a model of FDIRC geometry
> No Cherenkov (optical) photons activated
> No instrumentation
Doug Standalone model of FDIRC

FDIRC implementation inside BRN（II）

a But now：
－Doug and Andrea worked hard to insert standalone model inside Bruno
－All the required features are in place：
－Cherenkov photons activated
＞Photo－camera：the whole photo－camera plane is instrumented． Quantum efficiency already taken into account

New FF model: Cryostat and Magnets

a Space free between cryostat and shield will likely be used for SVT cabling and piping
a Space free between shield and DCH likely used as mechanical clearance
a No much room to increase Tungsten shield. Only possibility is to reduce DCH internal radius

New FF model: Magnetic model (I)

- Previously:
- detector solenoidal field turned off in final focus magnetic model
a This field is important for an accurate model of two-photon (pairs) backgrounds on SVT. Less important for Rad-Bhaha and Touschek
a Implementation:
- Magnitud: 1.5 Tesla
- Direction: Z>0 (0.0,0.0,1.0)
- Volume: field different from zero only inside a cylinder of length 40 cm and radius 40cm.

New FF model: Magnetic model (III)

New FF model: Magnetic model (IIII)

New FF model: Cryostat and Magnets (I)

Filippo Bosi Drawings

a All magnetic elements are made of the same material (QDO_mixture):

- Density: $7.57 \mathrm{gr} / \mathrm{cm}^{3}$
- Composition: Niobium (0.106), Titanium (0.119), Cooper (0.347) and Iron (0.428)

New FF model: Cryostat and Magnets (II)

BRN implementation

Results

a Will show the results for one representative FDIRC sector (sector 6) only just to show the format
a The full set of plots can be found at the web,

- Rad-bhabha:
http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/FDIRC_Bkg_Studies/Plot s_RadBhabha_background_FDIRC.pdf
- Pairs:
http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/FDIRC_Bkg_Studies/Plot s_Pairs_background_FDIRC.pdf
- Touschek LER:
http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/FDIRC_Bkg_Studies/Plot s_Touschek_LER_background_FDIRC.pdf
- Touschek HER:
http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/FDIRC_Bkg_Studies/Plot s_Touschek_HER_background_FDIRC.pdf

Results: FDIRC Bkg rates from Radl-Bhabha (I)

Sector 6

Inside Magnet

Outside Magnet

Within Steel

Total Rate

Results: FDIRC Bkg rates from Rad-Bhabha (II)

Total Rate per sector

Results: FDIRC Bkg rates from Pairs (I)

Sector 6

Outside Magnet

Within Steel

Total Rate

Results: FDIRC Bkg rates from Pairs (II)

Total Rate per sector

Results: FDIRC Bkg rates from Touschek LER (I)

Sector 6

Outside Magnet

Within Steel

Total Rate

Results: FDIRC Bkg rates firom Touschek LER (II)

Total Rate per sector

Results: FDIRC Bkg rates from Touschek HER (I)

Sector 6

Outside Magnet

Within Steel

Total Rate

Results: FDIRC Bkg rates from Touschek HER (II)

Total Rate per sector

Results: total bkg rates on FDIRC

Total Rate per sector

Bwd Horseshoe BRN implementation

Additional shield under photo-camera

Additional shield at BABAR

a Need the characteristics of this shield

- Material
- Dimensions

