LNF SuperB Collaboration Meeting PID Parallel session Mar. 21th 2012

Update on FDIRC full simulation

Alejandro Pérez INFN – Sezione di Pisa

Outline

- The new beam-gas sample
- Beam-gas background rates on the FDRIC
- FDIRC shield studies
- Summary

Beam-gas HER sample

Bkg rates on the FDIRC: Strategy (I)

- Use same sector labelling as in BABAR
- Determine the photo-electron (p.e.) rates per pixel (see next slide) for every sector and for all available background sources
- Use a "local" coordinate system in the instrumented plane: X_{local} vs Y_{local}

Bkg rates on the FDIRC: Strategy (II)

- Study the pixel rate for different regions were the tracks hit the quartz bar:
 - (a) Inside magnet: -160 < Z < 220 cm
 - (b) Within steel: -280 < Z < -160 cm
 - (c) Outside magnet: -280 < Z < -400 cm
- If main contribution comes from outside magnet
 - \Rightarrow can reduce backgrounds by increasing shields

Bkg rates on the FDIRC: Pixel map

- For each sector have an array 8x6 = 48 photo-detectors
- Each detector is an 8x8 = 64 array of PMTs (pixels) with ~6.08mm pitch

2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011 Alejandro Pérez,

Group 2 channels into

FDIRC Bkg rates from Beam-gas HER (I)

FDIRC Bkg rates from Beam-gas HER (II)

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011

Total bkg rates on FDIRC

Alejandro Pérez, LNF SuperB Collaboration meeting, MDI parallel session Mar 20th 2012

Total bkg rates on FDIRC

Alejandro Pérez, LNF SuperB Collaboration meeting, MDI parallel session Mar 20th 2012

FDIRC Bkg rates from Rad-Bhabha

Particle flux studies (I)

- Study the flux of particles through interesting regions of the the FDIRC mother boundary (magenta and green regions)
- Try to understand the nature of the particles crossing those boundaries (PID and spectrum)

Particle flux studies (II)

Particle flux studies (III)

Particle flux studies (VI)

Lead shield optimization studies (I)

- Shot particles (e^{\pm} , γ , n^{0}) at normal incidence on Lead for
 - Different lead thickness: 5 20 cm (1cm steps)
 - Different incident energies: 50 200 MeV (50MeV steps)
- Study the particle multiplicity and spectrum at the other end of the shield
- Optimization: thickness for which the probability to have more than one particle on the other side of the shield is lower than 10%

Probability(Multiplicity > 0) \leq 10%

Lead with different thickness

Lead shield optimization studies (II)

- Multiplicity at the other end of the lead shield due mainly to photons and electrons/positrons (very small contribution from neutrons)
- Higher the energy of the incident photon, thicker must be the lead shield

Lead shield optimization studies (II)

- Multiplicity at the other end of the lead shield due mainly to photons and electrons/positrons (very small contribution from neutrons)
- Higher the energy of the incident photon, thicker must be the lead shield
- In order to reduce the photon flux by a factor of 10 for photons up to 150MeV, the lead shield thickness needs to be 14.4cm

Lead shield optimization studies (III)

- Incident neutrons with kinetic energies from 50 to 200 MeV get multiplied by a factor of ~2.3 for lead thickness of 14cm
- The kinetic energy spectrum of those neutrons has a slight variation with the incident neutron kinetic energy
- Outgoing neutrons have a significant amount of kinetic energy (10 70 MeV)

⇒ Add a Boron-loaded (5%) polyethylene shield Alejandro Pérez, LNF SuperB Collaboration meeting, MDI parallel session Mar 20th 2012

FDIRC shield: BRN implementation

FDIRC shield: BRN implementation

Summary

- Beam-gas HER of the same order as Touschek LER
- The main machine background contribution on the FDIRC is due to Radbhabha, mainly from tracks hitting the quartz bar in the FBLOCK region
- Main flux of particles on FBLOCK are photons with energy lower than 200MeV

Shields:

- Lead thickness of 14cm can reduce the background by a factor of ~10.
 Shield BRN implementation: steel-lead-steel (2.5-10-2.5 cm) sandwich
- Neutrons:
 - Neutron multiplication by a factor ~2.2 for lead shield thickness of 14cm
 - Will add a Boron-loaded polyethylene shield (10 cm)

FEE:

- FEE boards implemented and instrumented by Riccardo
- Ready to study the doses and neutron fluxes
- FullSim code will freeze in 2 weeks from now.
- FullSim production is expected to start in 3 weeks from now.

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011

FDIRC implementation inside BRN (I)

- Previously:
 - Only a standalone model of FDIRC (Doug Roberts)
 - In Bruno:
 - > Only a model of FDIRC geometry
 - No Cherenkov (optical) photons activated
 - No instrumentation

Doug Standalone model of FDIRC

FDIRC implementation inside BRN (II)

But now:

- Doug and Andrea worked hard to insert standalone model inside Bruno
- All the required features are in place:
 - > Cherenkov photons activated
 - Photo-camera: the whole photo-camera plane is instrumented.
 Quantum efficiency already taken into account

New FF model: Cryostat and Magnets

- Space free between cryostat and shield will likely be used for SVT cabling and piping
- Space free between shield and DCH likely used as mechanical clearance
- No much room to increase Tungsten shield. Only possibility is to reduce DCH internal radius

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011

New FF model: Magnetic model (I)

- Previously:
 - detector solenoidal field turned off in final focus magnetic model
- This field is important for an accurate model of two-photon (pairs) backgrounds on SVT. Less important for Rad-Bhaha and Touschek

Implementation:

- Magnitud: 1.5 Tesla
- Direction: Z>0 (0.0,0.0,1.0)
- Volume: field different from zero only inside a cylinder of length 40cm and radius 40cm.

New FF model: Magnetic model (II)

New FF model: Magnetic model (III)

۲ [mm]

New FF model: Cryostat and Magnets (I)

All magnetic elements are made of the same material (QD0_mixture):

- Density: 7.57 gr/cm³
- Composition: Niobium (0.106), Titanium (0.119), Cooper (0.347) and Iron (0.428)

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011

New FF model: Cryostat and Magnets (II)

BRN implementation

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011

Results

- Will show the results for one representative FDIRC sector (sector 6) only just to show the format
- The full set of plots can be found at the web,
 - Rad-bhabha:

http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/FDIRC_Bkg_Studies/Plot s_RadBhabha_background_FDIRC.pdf

• Pairs:

http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/FDIRC_Bkg_Studies/Plot s_Pairs_background_FDIRC.pdf

• Touschek LER:

http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/FDIRC_Bkg_Studies/Plot s_Touschek_LER_background_FDIRC.pdf

• Touschek HER:

http://www.slac.stanford.edu/~aperez/SuperB/SuperB_Pisa/FDIRC_Bkg_Studies/Plot s_Touschek_HER_background_FDIRC.pdf

Results: FDIRC Bkg rates from Rad-Bhabha (I)

Α

Results: FDIRC Bkg rates from Rad-Bhabha (II)

Results: FDIRC Bkg rates from Pairs (I)

Results: FDIRC Bkg rates from Pairs (II)

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011

Results: FDIRC Bkg rates from Touschek LER (I)

Results: FDIRC Bkg rates from Touschek LER (II)

Results: FDIRC Bkg rates from Touschek HER (I)

Results: FDIRC Bkg rates from Touschek HER (II)

Results: total bkg rates on FDIRC

Bwd Horseshoe BRN implementation

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011

Additional shield under photo-camera

Additional shield at BABAR

- Need the characteristics of this shield
 - Material
 - Dimensions

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011