Beam Dynamics Studies in SuperKEKB

K. Ohmi (KEK) SuperB workshop at INFN-Frascati March 19-24, 2012

Parameters

	2011 Feb. HER no wiggler	2012 Feb. HER 60% wigglers			
Energy (GeV) (LER/HER)	4.0/7.00729	4.0/7.00729			
β _y * (mm)	0.27/0.30	0.27/0.30			
<u>β</u> _x * (mm)	32/25	32/25			
ε _x (nm)	3.2/5.3	3.2/ <mark>4.6</mark>			
<u>ε_v</u> /ε _x (%)	0.27/0.24	0.27/ <mark>0.28</mark>			
<u>σ_v(nm</u>)	48/62	48/62			
ξ _y	0.0897/0.0807	0.0881/0.0801			
<u>o</u> , (mm)	6/5	6/5			
I _{beam} (A)	3.6/2.6	3.6/2.6			
N _{bunches}	2500	2500			
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	80	80			
ER ε_x with 60% wigglers is used as the nominal value. ower HER ε_x can relax some other parameters ($\beta_{x/v}^*$, $\varepsilon_v/\varepsilon_x$, etc. t present, larger $\varepsilon_v/\varepsilon_x$ in HER is adopted.					

).

Contents

- Strong-strong beam-beam simulation, synchro-beta resonances
- Tolerance of IP parameter
- Electron cloud & lon
- TMCI and beam tilt due to mask impedance
- Injection, life time, background, dynamic aperture

Progress of Strongstrong simulation

- Gaussian approximation
- Particle In Cell-Gauss composite
- Fully Particle In Cell

Bunch slicing

- Integral along collision, bunch slicing
- nslice= $(5 \sim 10) \times \sigma_z \theta / \sigma_x = (5 \sim 10) \times 25$

 $\sigma_z \theta / \sigma_x = I$ for KEKB

• Should be smooth function for z.

• 5000 PIC sub collision and 35000 gaussian collision

Gaussian and PIC combined method

Example: study of synchro-beta effect

Particle in Cell

- Potential solve for arbitrary beam distribution in transverse plane
- KEKB 50(~7x7) subcollision/collision
- SuperKEKB 40,000(~200x200) subcollision/ collision

Shifted Green function $\phi(\mathbf{r}) = -\frac{1}{2\pi\varepsilon_0} \int d\mathbf{r}' G(\mathbf{r} - \mathbf{r}' - \mathbf{r}_0) \rho(\mathbf{r}' + \mathbf{r}_0) \qquad \text{J. Qiang}$

Potential where apart from a distance

$$f(x_{i+} - x_0, y_{i+} - y_0) - f(x_{i+} - x_0, y_{i-} - y_0) - f(x_{i-} - x_0, y_{i+} - y_0) + f(x_{i-} - x_0, y_{i-} - y_0)$$

$$f(x_{i+} - 2\Delta x - x_0, y_{i+} - y_0) - f(x_{i+} - 2\Delta x - x_0, y_{i-} - y_0) - f(x_0 - 2\Delta x + x_{i-}, y_{i+} - y_0) + f(x_{i-} - 2\Delta x - x_0, y_{i-} - y_0)$$

$$f(x_0 + x_{i+}, y_0 - 2\Delta y + y_{i+}) - f(x_0 + x_{i+}, y_0 - 2\Delta y + y_{i-}) - f(x_0 + x_{i-}, y_0 - 2\Delta y + y_{i+}) + f(x_0 + x_{i-}, y_0 - 2\Delta y + y_{i-})$$

$$f(x_0 - 2\Delta x + x_{i+}, y_0 - 2\Delta y + y_{i+}) - f(x_0 - 2\Delta x + x_{i+}, y_0 - 2\Delta y + y_{i-}) - f(x_0 - 2\Delta x + x_{i-}, y_0 - 2\Delta y + y_{i+}) + f(x_0 - 2\Delta x + x_{i-}, y_0 - 2\Delta y + y_{i-})$$

$$f(x,y) = \int dx dy G(\mathbf{r}) = -3xy + x^2 \tan^{-1}(y/x) + y^2 \tan^{-1}(y/x) + xy \log(x^2 + y^2)$$

 Φ_{ij} is given on the grid space far from colliding beam.

Tolerance of IR parameters beam-beam

- Weak-strong simulation is used for the parameter scan, because the strong-strong requires very long CPU time.
- Examples, x-offset and r_1^* .

Summary – tolerance for parameters with 20% luminosity degradation

Parameter	w/ crab waist	w/o crab	waist
r ₁ * (mrad)	±5.3	±3.5	
r ₂ * (mm)	±0.18	±0.13	
r ₃ * (m⁻¹)	±44	±15	
r ₄ * (rad)	±1.4	±0.4	
$\partial r_1^* / \partial \delta$ (rad)	±2.4	±2.1	
$\partial r_2^* / \partial \delta$ (m)	±0.086	±0.074	
$\partial r_3^* / \partial \delta$ (m ⁻¹)	±1.0×10 ⁴	±8400	
$\partial r_4^* / \partial \delta$ (rad)	±400	±290	
ղ _y * (µm)	±62	±31	
η,,'*	±0.73	±0.23	
$\Delta x (\mu m)$ collision offset $\Delta s (\mu m)$ waist error $\Delta y \Delta y'(\mu m \mu rad)$ collision offset	10 1 100 1 et 0.02 (100)	.0 00	The degradation is roughly quadratic
δx (μm) turn by turn noise δy (nm)	0.5 (4).5 4	σx=6-10μm σy=60 nm

Beam noise

• Turn by turn noise without correlation in turns.

Ion instability

- Turn-by-turn noise due to ion instability.
- Coupled bunch instability with very high growth rate.
- Feedback system suppresses the instability.
- Residual dipole motion as a turn by turn noise may degrade the beam-beam performance.

Instability growth with bunchby-bunch feed back

Examples of ion instability growth

Bunch train length of Nb=2500 with spacing=4ns.

Electron cloud instability

• $\omega_e \sigma_z/c$ is very high in low emittance rings.

- Single bunch instability
- Coupled bunch instability

Threshold of the strong head-tail instability (Balance of growth and Landau damping)

• Stability condition for
$$\omega_{e}\sigma_{z}/c>1$$

$$\omega_{e} = \sqrt{\frac{\lambda_{p}r_{e}c^{2}}{\sigma_{y}(\sigma_{x}+\sigma_{y})}}$$

$$U = \frac{\sqrt{3}\lambda_{p}r_{0}\beta}{v_{s} \gamma \omega_{e}\sigma_{z}/c} \frac{|Z_{\perp}(\omega_{e})|}{Z_{0}} = \frac{\sqrt{3}\lambda_{p}r_{0}\beta}{v_{s} \gamma \omega_{e}\sigma_{z}/c} \frac{KQ}{4\pi} \frac{\lambda_{e}}{\lambda_{p}} \frac{L}{\sigma_{y}(\sigma_{x}+\sigma_{y})} = 1$$

• Since
$$\rho_e = \lambda_e / 2\pi \sigma_x \sigma_y$$

 $\rho_{e,th} = \frac{2\gamma v_s \omega_e \sigma_z / c}{\sqrt{3} K Q r_0 \beta L}$

Origin of Landau damping is momentum compaction

$$v_s \sigma_z = \alpha \sigma_\delta L$$

- Q=min(Q_{nl}, $\omega_e \sigma_z/c$)
- Q_{nl}=10 in this presentation, depending on the nonlinear interaction.
- K characterizes cloud size effect and pinching.

Parameters

Table 1: Basic parameters of the positron rings

Lattice		KEKB	Cesr-TA	PETRA-III	SuperKEKB	Super B
Circumference	<i>L</i> (m)	3,016	768	2304	3016	1260
Energy	$E \; (\text{GeV})$	3.5	2-5	6	4.0	6.7
Bunch population	$N_{+}(10^{10})$	8	2	0.5	9	5
Beam current	I_{+} (A)	1.7	-	0.1	3.6	1.9
Emittance	$\varepsilon_x(\text{nm})$	18	2.3	1	3.2	2
	$\varepsilon_y(\text{nm})$	0.18	0.023	0.01	0.01	0.005
Momentum compaction	$\alpha(10^{-4})$	3.4	68	12.2	3.5	
Bunch length	$\sigma_z(\text{mm})$	6	6.8	12	6	5
RMS energy spread	$\sigma_E / E(10^{-3})$	0.73	0.8		0.8	0.64
Synchrotron tune	ν_s	0.025	0.067	0.049	0.0256	0.0126
Damping time	$ au_x(\mathrm{ms})$	40	56.4	16	43	26

Table 2: Threshold of the B factories positron rings and others

	KEKB	KEKB	Cesr-TA	PETRA-III	SuperKEKB	SuperB
	(no sol.)	(50 G sol.)				_
$N_{+}(10^{10})$	3	8	2		8	5
I_{+} (A)	0.5	1.7	-	0.1	3.6	1.9
$\ell_{sp}(ns)$	8	7	4-14	8	4	4
$\omega_e/2\pi(\mathrm{GHz})$	28	40	43	35	150	175
$\omega_e \sigma_z/c$	3.6	5.9	11.0	8.8	18.8	18.3
$ ho_e \ (10^{12} \ { m m}^{-3})$	0.63	0.38	1.7	1.2	0.27	0.54
	$N_{+}(10^{10}) I_{+} (A) \\ \ell_{sp}(ns) \\ \omega_{e}/2\pi (GHz) \\ \omega_{e}\sigma_{z}/c \\ \rho_{e} (10^{12} m^{-3})$	$\begin{array}{c c} & {\rm KEKB} \\ ({\rm no\ sol.}) \\ \hline N_+(10^{10}) & 3 \\ I_+ \ ({\rm A}) & 0.5 \\ \ell_{sp}({\rm ns}) & 8 \\ \omega_e/2\pi({\rm GHz}) & 28 \\ \omega_e\sigma_z/c & 3.6 \\ \rho_e \ (10^{12}\ {\rm m}^{-3}) & 0.63 \\ \end{array}$	$\begin{array}{c cccc} & {\rm KEKB} & {\rm KEKB} \\ ({\rm no\ sol.}) & (50\ {\rm G\ sol.}) \\ \hline N_+(10^{10}) & 3 & 8 \\ I_+ \ ({\rm A}) & 0.5 & 1.7 \\ \ell_{sp}({\rm ns}) & 8 & 7 \\ \omega_e/2\pi({\rm GHz}) & 28 & 40 \\ \omega_e\sigma_z/c & 3.6 & 5.9 \\ \rho_e \ (10^{12}\ {\rm m}^{-3}) & 0.63 & 0.38 \\ \hline \end{array}$	$\begin{array}{c cccc} & {\rm KEKB} & {\rm KEKB} & {\rm Cesr-TA} \\ ({\rm no\ sol.}) & (50\ {\rm G\ sol.}) \end{array} \\ \hline N_+(10^{10}) & 3 & 8 & 2 \\ I_+ \ ({\rm A}) & 0.5 & 1.7 & - \\ \ell_{sp}({\rm ns}) & 8 & 7 & 4-14 \\ \omega_e/2\pi({\rm GHz}) & 28 & 40 & 43 \\ \omega_e\sigma_z/c & 3.6 & 5.9 & 11.0 \\ \rho_e \ (10^{12}\ {\rm m}^{-3}) & 0.63 & 0.38 & 1.7 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Y. Susaki, K. Ohmi, IPAC10

- Simulation $\rho_{th}=2.1 \times 10^{11} \text{ m}^{-3}.(v_s=0.012)$
- Analytic $\rho_{th}=2.7 \times 10^{11} \text{ m}^{-3}$.
- Target $\rho_e \sim |x|0^{11} \text{ m}^{-3}$
- Take care of high β section. Effects are enhanced. $\oint \rho_e \beta_y ds/L = 10^{11} \times 10 \text{ m}^{-2}$

Estimation of cloud density and coupled bunch instability

• Ante-chamber, $\delta_{2,max}$ =1.2 without special structure like groove

 $\rho_e = 2.2 \times 10^{11} \text{ m}^{-3}$

Wake field and growth rate of the coupplied bunch instability.

• Suetsugu-san estimates the density based on measurements and is designing the chamber to achieve density.

TMCI (σ_z=6mm)

• LER : d=2.42 mm gap collimator at β_y =94m.

• HER : two d=5 mm gap collimators at β_y =508m. I_{th}=1.04mAx2~3=2~3mA 1.04x1~1.5=1~1.5mA

 Consistent design for QCS aperture and TMCI is on going.

Beam tilt due to the impedance

$$\Delta y(z) = \sqrt{\beta_y \beta_y^*} \Delta y'(z) = \sqrt{\beta^*} \sum_i \sqrt{\beta_y(i)} y_0(i) \frac{1}{eE} \int_0^\infty \rho(z'+z) W_{y1}(z') dz'$$

D. Zhou & A. Chao

- Round model impedance: 1/10 of instability threshold.
- For the case of the impedance corresponding the instability threshold, tolerance of the orbit shift is 0.5 mm for 10% beam size increase.

Space charge tune shift in LER

Mikhail pointed out

$$\Delta \nu_x = \frac{\lambda_p r_e \beta_x L}{2\pi \gamma_p^3 \sigma_x (\sigma_x + \sigma_y)} \approx -0.0056$$
$$\lambda_p r_e \beta_y L$$

$$\Delta \nu_y = \frac{\lambda_p r_e \beta_y L}{2\pi \gamma_p^3 \sigma_y (\sigma_x + \sigma_y)} \approx -0.11$$

- This tune shift is not very large compare than recent proton machines.
- Manageable perhaps?

Injection and life time

- beam-beam & simple revolution matrix
- beam-beam interaction, Nslice=300

SAD simulation including lattice is also done.

Motion of three sampled particles

Synchrotron injection

- z oscillation does not induce vertical motion.
- Synchrotron injection is proposed especially in HER (smaller dynamic aperture than LER)

Touschek life time

- Horizontal amplitude is induced by dispersion at Touschek events.
- Vertical emittance increases for large horizontal amplitude without CW.
- Beam-beam make worse Touschek life time.
- This effect is being studied.

- Strong dynamic aperture degradation is seen by crab sextupole installation (H. Koiso).
- We do not know how to handle the nonlinear terms of Q's and Solenoid located at very high β.

Crab waist or not

- Crab waist scheme well matches the large Piwinski angle collision for injection and Touschek event if dynamic aperture is sufficient.
- It seems to be hard to use the crab waist scheme in very low beta interaction point for the dynamic aperture issue.
- Do we have a local chromaticity and nonlinearity compensation technique? This is very interesting subject.

Summary

 Beam dynamics studies have been continued as is listed in SuperKEKB.

- Dynamic aperture study is most important.
- Especially, "crab waist or not" is interesting subject for beam-beam interaction, aperture, injection, life time...

 This can be one of collaboration subjects between SuperB and SuperKEKB.

Others

- Background studies are being performed by H. Nakayama, Y. Ohnishi et al.
- Damping ring micro-bunch instability is studied by H. Ikeda and D. Zhou.