
SuperB Event Data Chain
Architecture Proposal

S. Luitz, SuperB Collaboration Meeting
LNF, March 2012

Event Data Chain Architecture
Proposal

•  Last week Daniel and I spent some time
thinking about the event data chain
implementation

•  Assumptions
•  150kHz L1 Accept Rate
•  100-200 kByte event size

Guiding Principles
•  Keep the system simple and flexible
•  Building blocks should be replaceable or

upgradeable without having to change
the rest of the system

•  End-to-end Data Flow architecture
– No “artificial” split into DAQ and “Online”

•  Trigger and Event Data Path (L1T -> disk)
•  Support systems (ECS, RC, DC, …)
• Hardware / Software

How it works
•  L1 trigger sends decisions to FCTS

–  Fixed latency
•  FCTS broadcasts

–  Readout commands to FEEs (fixed latency)
–  Copy of readout command + additional event information to the ROMs (fixed

latency not required)
•  Including HLT destination node

•  FEEs send corresponding fragment data to ROMs
•  ROMs combine event fragments and associate with additional event

information
–  No out-of order processing (fully pipelined)

•  ROMs send event data to destination HLT node determined by FCTS
•  HLT processes events, writes output to per-node stream (disk)
•  3 flow control mechanisms

–  Fast throttle FEE -> FCTS (return path of command link)
–  Slow throttle ROM -> FCTS (ethernet) (might be optional)
–  HLT flow control HLT -> FCTS (ethernet) (request, sliding window protocol)

FCTS

F
O

A
G
G

FEE FEE FEE FEE

ROM ROM ROM

FEE
FEE

FEE
FEE

FEE
FEE

FEE
FEE

ROM

Event Building Switch

...

...

Clock and Command Links

Fast Throttle

HLT Node HLT Node HLT Node HLT Node

F
OROM Command

S
w
it
c
h

HLT
Flow Control

L1T

...

S
w
it
c
h

Slow (ROM) Throttle

Clock
Fiducial

2 Types of Command Protocols
•  Separate command links from FCTS to FEE and ROMs
•  FEE command links

–  Transmit commands and clock?
–  Fixed latency
–  Radiation-hard
–  Minimize command length – simple commands
–  N-bit “tag” for error detection

•  ROM command links
–  Transmit “ROM commands” (no clock)
–  No radiation requirements
–  Variable latency – can even derandomize

•  Copy of FEE command (allows for consistency check)
•  Unique event identifier (timestamp)
•  Full trigger word
•  Destination HLT node “address”

•  Separating the links also keeps complicated decisions (e.g. HLT node
assignments) out of the fixed-latency path

•  Could use the same link technology

Error Detection & Recovery
•  We still need to think through the various possible failure

modes and how to deal with them / recover, e.g.:
–  Loss of clock / loss of sync
–  Loss of L1 Accept command to FEE
–  Bit error(s) in L1 Accept command
–  …

•  Details of response depend on implementation and failure
modes of links, clock distribution, etc.

•  Questions
–  Where / how do we detect errors?
–  Do we need to stop the complete DAQ to resync?
–  What reliability of detection do we need (e.g # of tag bits)
–  …

FCTS Input from Accelerator
•  Similar to BaBar
•  RF clock, divide by 8 to obtain the experiment

master clock (~59.5 MHz)
•  Revolution “fiducial”

–  so that we can synchronize our time counter to the
revolution phase

•  HER and LER trickle injection shot signals
–  Would allow L1 trigger inhibit around injection bunches
–  Need to record time (including phase) of the last HER/

LER injection shot with every event (so that HLT and
offline filters can be applied to suppress high-
background bunches around injection shots)

•  Through FCTS? Through trigger / trigger readout?

Event Time Stamp
•  Event identifier unique over lifetime of

experiment
•  BaBar: 56 bit counting at ~60MHz

–  wraps every ~20 years
–  clock derived from RF (divided by 8)
–  fixed relationship to revolution fiducial
–  coarse time initialized by wall clock time (e.g.

from an NTP source)
•  Initialization: Stop counter, load initial time, arm

counter, start at next revolusion
•  Propose to do the same …

Event Builder
•  Basic design choices

–  Push event builder
•  A la BaBar or LHCb
•  ROMs push event fragments into the HLT
•  Load balancing controlled by FCTS

–  Note: BaBar didn’t load balance
–  Request-based event builder

•  HLT nodes pull events from ROMs
–  Connection-less vs. connection-based

•  Proposal: Connectionless & Push
–  Allows maximum flexibility for ROM

implementation

HLT Load Balancing
•  Sequencing of HLT node assignments done by FCTS (in

firmware)
•  Round-robin (?) over available nodes
•  Every HLT node periodically announces its number of free

input queue slots to the FCTS (over ethernet)
–  i.e. how many more events is it willing to take
–  FCTS maintains a per node window / counter

•  Decrements with every event sent to this node
•  Stop sending events to this node when reaching 0

•  Think of this as a sliding window or generic event request
implementation

•  Provides dead HLT-node removal and load balancing
•  Should be very simple and robust

–  Light-weight version of what LHCb is doing

To MEP or not to MEP?
•  Do we need multi-event packets?
•  Naïve calculation:

–  200 kByte events from 60 ROMs
•  à 3.3 kByte per ROM average

–  > 2 Ethernet standard MTUs
–  Event with jumbo frames packing limited to 2

events per frame
•  Probably not necessary for Ethernet

–  Build capability into FCTS (& ROM) in case we
use a different transport?

