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Event Data Chain Architecture 
Proposal 

•  Last week Daniel and I spent some time  
thinking about the event data chain 
implementation 

•  Assumptions 
•  150kHz L1 Accept Rate 
•  100-200 kByte event size 

 



Guiding Principles 
•  Keep the system simple and flexible 
•  Building blocks should be replaceable or 

upgradeable without having to change 
the rest of the system 

•  End-to-end Data Flow architecture 
– No “artificial” split into DAQ and “Online” 

•  Trigger and Event Data Path (L1T -> disk) 
•  Support systems (ECS, RC, DC, …) 
• Hardware / Software  



How it works 
•  L1 trigger sends decisions to FCTS 

–  Fixed latency 
•  FCTS broadcasts 

–  Readout commands to FEEs (fixed latency) 
–  Copy of readout command + additional event information to the ROMs (fixed 

latency not required) 
•  Including HLT destination node 

•  FEEs send corresponding fragment data to ROMs 
•  ROMs combine event fragments and associate with additional event 

information 
–  No out-of order processing (fully pipelined) 

•  ROMs send event data to destination HLT node determined by FCTS 
•  HLT processes events, writes output to per-node stream (disk) 
•  3 flow control mechanisms 

–  Fast throttle FEE -> FCTS (return path of command link) 
–  Slow throttle ROM -> FCTS (ethernet) (might be optional) 
–  HLT flow control  HLT -> FCTS (ethernet) (request, sliding window protocol) 
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2 Types of Command Protocols 
•  Separate command links from FCTS to FEE and ROMs 
•  FEE command links 

–  Transmit commands and clock? 
–  Fixed latency 
–  Radiation-hard 
–  Minimize command length – simple commands 
–  N-bit “tag” for error detection 

•  ROM command links 
–  Transmit “ROM commands” (no clock) 
–  No radiation requirements 
–  Variable latency – can even derandomize 

•  Copy of FEE command (allows for consistency check) 
•  Unique event identifier (timestamp) 
•  Full trigger word 
•  Destination HLT node “address” 

•  Separating the links also keeps complicated decisions (e.g. HLT node 
assignments) out of the fixed-latency path 

•  Could use the same link technology 



Error Detection & Recovery 
•  We still need to think through the various possible failure 

modes and how to deal with them / recover, e.g.: 
–  Loss of clock / loss of sync 
–  Loss of L1 Accept command to FEE 
–  Bit error(s) in L1 Accept command 
–  … 

•  Details of response depend on implementation and failure 
modes of links, clock distribution, etc. 

•  Questions 
–  Where / how do we detect errors? 
–  Do we need to stop the complete DAQ to resync?  
–  What reliability of detection do we need (e.g # of tag bits) 
–  … 



FCTS Input from Accelerator 
•  Similar to BaBar 
•  RF clock, divide by 8 to obtain the experiment 

master clock (~59.5 MHz) 
•  Revolution “fiducial” 

–  so that we can synchronize our time counter to the 
revolution phase 

•  HER and LER trickle injection shot signals 
–  Would allow L1 trigger inhibit around injection bunches 
–  Need to record time (including phase) of the last HER/

LER injection shot with every event (so that HLT and 
offline filters can be applied to suppress high-
background bunches around injection shots) 

•  Through FCTS? Through trigger / trigger readout? 



Event Time Stamp 
•  Event identifier unique over lifetime of 

experiment 
•  BaBar: 56 bit counting at ~60MHz  

–  wraps every ~20 years 
–  clock derived from RF (divided by 8) 
–  fixed relationship to revolution fiducial 
–  coarse time initialized by wall clock time (e.g. 

from an NTP source) 
•  Initialization: Stop counter, load initial time, arm 

counter, start at next revolusion 
•  Propose to do the same … 



Event Builder 
•  Basic design choices 

–  Push event builder 
•  A la BaBar or LHCb 
•  ROMs push event fragments into the HLT 
•  Load balancing controlled by FCTS 

–  Note: BaBar didn’t load balance 
–  Request-based event builder 

•  HLT nodes pull events from ROMs 
–  Connection-less vs. connection-based 

•  Proposal: Connectionless & Push 
–  Allows maximum flexibility for ROM 

implementation 



HLT Load Balancing 
•  Sequencing of HLT node assignments done by FCTS (in 

firmware) 
•  Round-robin (?) over available nodes 
•  Every HLT node periodically announces its number of free 

input queue slots to the FCTS (over ethernet) 
–  i.e. how many more events is it willing to take 
–  FCTS maintains a per node window / counter 

•  Decrements with every event sent to this node 
•  Stop sending events to this node when reaching 0 

•  Think of this as a sliding window or generic event request 
implementation 

•  Provides dead HLT-node removal and load balancing 
•  Should be very simple and robust 

–  Light-weight version of what LHCb is doing 



To MEP or not to MEP? 
•  Do we need multi-event packets? 
•  Naïve calculation: 

–  200 kByte events from 60 ROMs 
•  à 3.3 kByte per ROM average 

–  > 2 Ethernet standard MTUs 
–  Event with jumbo frames packing limited to 2 

events per frame 
•  Probably not necessary for Ethernet 

–  Build capability into FCTS (& ROM) in case we 
use a different transport? 


