

SVT detector Electronics Status

On behalf of the SVT community Mauro Citterio INFN Milano Overview:

- SVT design status
- F.E. chips
- Electronic design
- Hit rates and data volumes

SVT Design

Detectors: 5 Layers with Si Strips (z, phi, L1-L5); one high precision inner layer (L0) **Open options** for L0: striplets (45° strips), Hybrid pixels, MAPS

<u>Front-End Chips</u>: 128 channels ASIC for strips, large (>10k) pixel area chip <u>ROS</u>: Layers are segmentend in phi (8-18) and z (2): 240 Read-Out Sections (ROS)

Strip readout architecture under development

How many buffers? How many barrels?

Asynchronous logic assumed:

Triggered event size not known a-priori (thus readout time as well)

Simulation status

- All elements have been modeled on both sides
 - VHDL for hit extraction system and slow control
 - SystemVerilog for the strip FE logic and buffers
- Test Bench developed:
 - Elements:
 - Monte Carlo hit generator
 - Slow control vectors for chip configuration and opearation
 - Hit-IN / Hit-OUT lists for efficiency evaluation.
 - Device Under Test
 - Simulation Tool: ModelSim SE (allows mixed-code simulations)
- So Far
 - Whole architecture integrated in simulation
 - Simulated with LO and LI expected rates (safety factor included)

Simulations

- Tens of ms of operation simulated
- MC hit rate trimmed to 2 MHz/strip (LO) and 760 kHz/strip (L1)
- Trigger latency 6 us / trigger rate 200 kHz.
- Time stamp resolution: 30 ns
- Trigger buffer depth scan $(8 \rightarrow 16 \rightarrow 32 \rightarrow 64)$
- Efficiency evaluation $\left(1 \frac{\text{HitIn} \text{HitOut}}{\text{HitIn}}\right)$

NB: No multiple hits allowed on the same strip for the same time interval.

Only digital readout efficiency taken into account

Simulation results (LO/L1)

2 MHz/strip :	buffer size	16	32	64
laver 0	buffered hits	3.8 M	12.9 M	12.9 M
Layer	of which triggered	23363	76850	23363
	output triggered hits	14679	76849	23363
	triggered hit lost	8684	1	0
	Efficiency (%)	62.8	99.9987	100

760 kHz/strip :	buffer size	8	16	32
l aver 1	buffered hits	1.4 M	7 M	7 M
	of which triggered	8748	28829	28829
	output triggered hits	6788	28825	28829
	triggered hit lost	1960	4	0
	Efficiency (%)	77.6	99.986	100

R&D on Pixel chip options for LO

- · Apsel-VI (MAPS)
 - MATRIX 96x128 (2 sub-m. 48 x128)
 - 5034 um × 9800 um die area
 - 70 k Std-Cell readout
 - Core density = 25%
- SuperPix1 (hybrid pixels)
 - MATRIX 32x128 (2 sub-m. 16x128)
 - 3255 um × 9421 um die area
 - 40k Std-Cell readout
 - Core density = 20%

- Triggered chips; L1 latency on pixels; efficiencies >98%;
- Output rate max: 200 MHit/s;

DAQ reading chain for LO-L5

DAQ chain independent on the chosen FE options

HDI and output bus

Minimal number of elements on HDI (FE chips a data 'organizer' + serializer 2:1-4:1)

6 shared input lines: Reset, Clock, FastClock, Timestamp, Trigger, RegIn 1 shared output line: RegOut N lines × M chips in output Ground and powering on the bus Signal lines in standard LVDS (CMOS to/from LVDS required on HDI if not provided on FE)

- HDI elements should be:
- Rad-hard characteristics dependent on chips
 - Requirement: > 5 Mrad/year
- Power dissipation: < 1 W/chip (guess-estimate, past values)

Number of Transition Cards and Output Bus

Total			12	20		240	86+86= 172	172	172
L5	Z Phi	18	36	5 4	5 4	72	18	36	36
L4	Z Phi	16	32	5 4	5 4	64	32	32	32
L3	Z Phi	6	12	10 6	10 6	24	24	24	24
L2	Z Phi	6	12	7 7	7 7	24	24	24	24
L1	Z Phi	6	12	7 7	7 14	24	24	24	24
LO	Top Bottom	8	16	6 6	12 12	32	32	32	32
Layer		Module	HDI	Oi (1 Chip Fa	utput Lines 80MHz) on 1 ce of the HDI	Copper Bus	Transition Card (TC)	Optical Fiber on Transition Card	GROS

- Proposal:
- 1 Transition Card accept 1 Output Bus for L0,L1,L2,L3
- 1 Transition Card accept 2 Output Bus for L4, L5

- 1 copper bus for TC Layer 0,1,2,3 1 Fiber for TC
- To reduce No of TC and to increase the size
- Number of LVDS lines on Output bus is limited to 8-9

2 copper bus for TC Layer 4,5

The Output Bus: 3 layer Copper/Kapton Tape. Aspect ratio: ~ 10 mm x 400-500 mm At the connector the tape is ~ 17 mm wide

Only rated 150 Volt

ISTITUTO NAZIONALE DI FISICA NUCLEAR

Width of Output Bus is determined by geometrical reasons:

- Dimension of Transition Card
- Routing of Bus through available openings (an example is shown on bottom)

Copper Bus Structure

Stack-up Design Rules:

LVDS Lines: Strip lines LVDS Lines: 4 mils LVDS Space: 4 mils LVDS Copper Thickness ~ 20 um (~½ ounce)

Dielectric Thickness: ~ 100 mils Zdiff ~ 100 Ohm To be optimized

Kapton Thickness: 2 mils (?)

Via Diameter: 10-12 mils Via Clearance: 6 mils

Power/Gnd Planes: Widht ~ 4.7 mm (almost double for GND !!) Thickness > 50 um (or 2 ounces) Current capability ~ 3-3.5 Amps Voltage drop (both ways) ~ 250 mV

Copper Bus Structure

GND	1	36	GND	
D1+	2	37	Reg Out +	
D1-	3	38	Reg Out -	
GND	4	39	GND	
D2+	5	40	Power 1	
D2-	6	41	Power 1	
GND	7	42	Power 1	
D3+	8	43	Power 1	
D3-	9	44	Power 1	
GND	10	45	Power 1	
D4+	11	46	Power 1	
D4-	12	47	Power 1	
GND	13	48	Power 1	
D5+	14	49	Power 1	
D5-	15	50	Power 1	
GND	16	51	Power 1	
D6+	17	52	Power 1	
 D6-	18	53	_	
GND	19	54	Power 2	
Trigger +	20	55	Power 2	
Trigger -	21	56	Power 2	
GND	22	57	Power 2	
TimeStamp +	23	58	Power 2	
Time Stamp -	24	59	Power 2	
GND	25	60	Power 2	
Clock +	26	61	Power 2	
Clock -	27	62	Power 2	
GND	28	63	Power 2	
Fast Clock +	29	64	Power 2	
Fast Clock -	30	65	Power 2	
GND	31	66	Power 2	
Reset +	32	67	GND	
Reset -	33	68	Reg In +	
GND	34	69	Reg In -	
Not Assigned	35	70	GND	

The "component" blocks have approximately the right dimensions:

- → more space considered ~ 3 cm (grey box)
- → The turbine structure is helping by increasing the other side to at least 55 mm
- → The Optical Interface 13x50x11 mm. The GBT 15x15 mm, the FPGA 32x32 mm

Input Power Cables NOT shown

SuperB-FEB Board schematics

FCTS protocols to be decided experiment-wide Large FPGA for data shipping and monitoring VME FPGA or uCPU might be included in the large FPGA.

Optical link mezzanine card for EDRO

Developed as a part of ATLAS/FTK project (LNF)

4 optical links at 1 Gbit/s; FPGA Xilinx, 40/100 MHz clk (programmable) First prototypes under tests. Usable as link test mezzanine in SuperB Electronic Data Load Evaluation Design assumptions

- Detector geometry as from Luciano/Filippo
- Background rates from Cenci/Rizzo
- Fully Strip/striplet SVT triggered
- FE chips with 128 channels
- FE word length: 20 bits (serialized)
- Trigger/DAQ
 - 150 kHz trigger rate;
 - LO-L3: 300 ns DAQ window, L4-L5: 1 us
 - 30 ns BCO Clock

Background rates

Input rates per area

		Average total strip rate/area from Bruno (safety x5 included)	Average total strip rate from SuperB dimensions including safety x5 and average ganging in
Layers	lato	MHz/cm2	z(Khz)
0	1	1.908E+02	1997.86
0	2	2.613E+02	1997.86
1	phi	1.497E+01	803.12
1	Z	1.031E+01	507.91
2	phi	8.808E+00	572.37
2	Z	6.885E+00	480.21
3	phi	2.348E+00	449.40
3	Z	2.994E+00	283.24
4	phi	3.371E-01	98.49
4	Z	2.180E-01	51.29
5	phi	1.593E-01	59.78
5	Z	1.142E-01	33.68

 Average occupancies and total load • Max strip rate

		Max strip rate for SuperB including safety x5 and average
Layers	lato	ganging in z (Khz)
0	1	1509.27
0	2	2525.38
1	phi	1445.00
1	Z	726.96
2	phi	960.00
2	Z	697.50
3	phi	775.00
3	Z	675.78
4	phi	195.00
4	Z	203.63
5	phi	135.00
5	Z	133.29

Peak chip load

Strip front-end chip

 Triggered, 128 channels, 60 MHz clock, 60/120/180 MHz output clock, serialized output.

2 Data word: Time-stamp-like and hit

Hit: 7 bits Channel ID, 4 bits ToT, 1 bit word type, 4 bits to be defined, for a total of 16 bits
Timestamp: 10 bits Timestamp, 1 bit word type, 5 bits to be defined, for a total of 16 bits

Guesswork: serialization using a 8b/10b protocol implies a **20 bit output word**

Layer	layer Type	Chip /RO S	Avai chan s	back. rate MHz/ cm2 (safety = 5)	Hits in BCO	Occup ancy in BCO	Group ing	Trigge red Gbit/s/ GROS	FE Board s	Event Size (hits)
0	Striplet u	6	768	230	50.2	6.54%	1	1.51	3	8037
0	Striplet v	6	768	230	50.2	6.54%	1	1.51	3	8037
1	Strip z	7	896	10.31	13.6	1.52%	1	0.41	1	1637
1	Strip phi	7	896	14.97	19.8	2.21%	1	0.59	1	2377
2	Strip z	7	896	6.88	12.9	1.44%	1	0.39	1	1550
2	Strip phi	7	896	8.81	16.5	1.85%	1	0.50	1	1985
3	Strip z	10	1280	2.994	12.0	0.94%	1	0.36	1	1438
3	Strip phi	6	768	2.35	9.4	1.22%	1	0.28	1	1129
4a	Strip z	5	640	0.218	1.0	0.15%	2	0.20	1	1038
4a	Strip phi	4	512	0.337	1.5	0.30%	2	0.30	1	1605
4b	Strip z	5	640	0.218	1.0	0.16%	2	0.20	1	1075
4b	Strip phi	4	512	0.337	1.6	0.31%	2	0.31	1	1662
5a	Strip z	5	640	0.114	0.6	0.10%	2	0.13	1	769
5a	Strip phi	4	512	0.159	0.9	0.18%	2	0.18	1	1073
5b	Strip z	5	640	0.114	0.7	0.10%	2	0.13	1	793
5b	Strip phi	4	512	0.159	0.9	0.18%	2	0.18	1	1106

• 172 GROS, 204 1-Gbps links, 20 FEBoards, <88 kB/evento

Maximum data lines per chip

		Max HIT strip rate (kHz)	DAQ Time window (us)	Hits/ chip per Trig.	Words per chip per trigger	Bits per chip per trig.	band width (Mbit /s)	Lines at 60 MHz	Lines at 120 MHz	Line s at 180 MHz	Chip/ ROS	Lines/RO <u>S at 180</u> MHz
L0	U	2000	0.3	76.8	86.8	1736.0	260.4	6	3	2	6	12
L0	V	2000	0.3	76.8	86.8	1736.0	260.4	6	3	2	6	12
L1	Z	727	0.3	27.9	37.9	758.3	113.8	3	2	1	7	7
L1	PHI	1445	0.3	55.5	65.5	1309.8	196.5	4	2	2	7	14
L2	Z	697	0.3	26.8	36.8	735.3	110.3	3	2	1	7	7
L2	PHI	960	0.3	36.9	46.9	937.3	140.6	3	2	1	7	7
L3	Z	676	0.3	26.0	36.0	719.2	107.9	3	2	1	10	10
L3	PHI	775	0.3	29.8	39.8	795.2	119.3	3	2	1	6	6
L4	Z	204	1	26.1	36.1	722.2	108.3	3	2	1	5	5
L4	PHI	195	1	25.0	35.0	699.2	104.9	3	2	1	4	4
L5	Z	133	1	17.0	27.0	540.5	81.1	2	1	1	5	5
L5	PHI	135	1	17.3	27.3	545.6	81.8	2	1	1	4	4

1,2,4 lines per chip usable at 120 MHz on all SVT 14 lines per module max at 180 MHz (16 bits serializers)

- Strip/striplet front end chip defined.
- Digital efficiency evaluated estensively.
- Pixel options ongoing: two new chips designed.
- Definition of the DAQ Data Chain ongoing
- LO requires 8 1-Gbit links per physical module (is space an issue?).

FEboard-ROM links not yet decided (2-3.5-5 Gbit/s).
 We need up to a factor 3 compression for LO.