LNF SuperB Collaboration Meeting MDI Parallel session Mar. 20th 2012

FDIRC shields

Alejandro Pérez INFN – Sezione di Pisa

Outline

- Machine backgrounds on the FDIRC:
 - Reminder of previous production (LNF SuperB CM at LNF, Dec 2011)
- FDIRC Lead shield studies
- Summary and Outlook

Bkg rates on the FDIRC: Strategy (I)

- Use same sector labelling as in BABAR
- Determine the photo-electron (p.e.) rates per pixel (see next slide) for every sector and for all available background sources
- Use a "local" coordinate system in the instrumented plane: X_{local} vs Y_{local}

Bkg rates on the FDIRC: Strategy (II)

- Study the pixel rate for different regions were the tracks hit the quartz bar:
 - (a) Inside magnet: -160 < Z < 220 cm
 - (b) Within steel: -280 < Z < -160 cm
 - (c) Outside magnet: -280 < Z < -400 cm
- If main contribution comes from outside magnet
 - \Rightarrow can reduce backgrounds by increasing shields

Total bkg rates on FDIRC

FDIRC Bkg rates from Rad-Bhabha

Particle flux studies (I)

- Study the flux of particles through interesting regions of the the FDIRC mother boundary (magenta and green regions)
- Try to understand the nature of the particles crossing those boundaries (PID and spectrum)

Particle flux studies (II)

Particle flux studies (III)

Particle flux studies (VI)

Lead shield optimization studies (I)

- Shot particles (e^{\pm} , γ , n^{0}) at normal incidence on Lead for
 - Different lead thickness: 5 20 cm (1cm steps)
 - Different incident energies: 50 200 MeV (50MeV steps)
- Study the particle multiplicity and spectrum at the other end of the shield
- Optimization: thickness for which the probability to have more than one particle on the other side of the shield is lower than 10%

Probability(Multiplicity > 0) \leq 10%

Lead with different thickness

Lead shield optimization studies (II)

- Multiplicity at the other end of the lead shield due mainly to photons and electrons/positrons (very small contribution from neutrons)
- Higher the energy of the incident photon, thicker must be the lead shield

Lead shield optimization studies (II)

- Multiplicity at the other end of the lead shield due mainly to photons and electrons/positrons (very small contribution from neutrons)
- Higher the energy of the incident photon, thicker must be the lead shield
- In order to reduce the photon flux by a factor of 10 for photons up to 150MeV, the lead shield thickness needs to be 14.4cm

Alejandro Pérez, LNF SuperB Collaboration meeting, MDI parallel session Mar 20th 2012

Lead shield optimization studies (III)

- Incident neutrons with kinetic energies from 50 to 200 MeV get multiplied by a factor of ~2.3 for lead thickness of 14cm
- The kinetic energy spectrum of those neutrons has a slight variation with the incident neutron kinetic energy
- Outgoing neutrons have a significant amount of kinetic energy (10 70 MeV)

FDIRC shield: BRN implementation

FDIRC shield: BRN implementation

Summary

- The main machine background contribution on the FDIRC is due to Radbhabha, mainly from tracks hitting the quartz bar in the FBLOCK region
- Main flux of particles on FBLOCK are photons with energy lower than 200MeV
- Lead thickness of 14cm can reduce the background by a factor of ~10 Shield BRN implementation: steel-lead-steel (2.5-10-2.5 cm) sandwich

Issues:

- Neutron multiplication by a factor ~2.2 for lead shield thickness of 14cm
- Could these neutrons cause problems on the FDIRC electronics?
- Will add a Boron-loaded polyethylene shield (10 cm)

The Focusing Detector of Internal Reflected Cerenkov Light

- Charged particles produce Cerenkov photons
- Cerenkov photons transported throughout total internal reflection to a photocamera
- Measure projection on the instrumented plane of the Cerenkov cone angle and measure the particle mass

Alejandro Pérez, 2nd SuperB Collaboration meeting, PID parallel session Sep 14th 2011