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Barrel: innermost layers, mostly neutrons

FWD encaps (hottest region) : inner layers and outer layers (BEAM
halo), electron and photons

BWD encaps: inner layers and small radii
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What's new from the Frascati CM Meeting #° \
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Beam Composition for the IFR background 3 y

Radiative BhaBha Background Studies (neutrons, photons and electron)
Touschek background (neutrons, photons and electron)

Pair background (neutrons, photons and electron)

Background Studies and Absorbed dose on our FEEs

Proton study

FEEs studies improved
Beam-Gas Background
Neutron Background Shielding

Report from Vienna
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Background sources crossing the IFR detectos#*®™\
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Touschek scattering : results from a

4 A Coulomb collision of two relativistic
.:!.;:. ; .' E&.J r." ele(j,trons in a particle bea.m, producing
\ { NET an instantaneous change in particle
energy
T Pair production
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NeW Beam-Gas Scattering
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Neutron Energy Distributions for Radiativa BhaBha #%8™
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Energy vs time
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The Energy distribution for FWD and BWD Endcap are similar

Valentina Santoro

3° SuperB Collaboration Meeting



Neutron Rates (for different background sources) ##“™\

Rate vs Z-coordinate for Barrel

Rate of 450Hz/cm? - > about
3x10° neutrons/cm? for a year

- BhaBha
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Rate vs radius for FWD Endcap
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Photons for diffent background sources # % '\

Barrel: Photon Energy Distribution Rate vs Z-coordinate for Barrel {rB
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Photons of energy ~ 0.512 Photons of energy ~ 0.847
MeV are due from neutron

inelastic scattering on Fe’®

MeV are from annihilation
radiation

Photons of energy ~ 2.223
MeV are from neutron
capture on Hydrogen
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Electrons for diffent background sources #% "\

Barrel: Electron Energy Distribution Rate Layer O vs Z-coordinate for Barrel ErB
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Particle composition of the IFR background ##%™\

 For BhaBha, Touschek Pair, BeamGas events the particle crossing the IFR s“nErB
are photons, electron, protons, neutrons and heavy nuclei U

Carbon ion
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We have a higher number of protons than neutrons
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Where are these protons from! (1) 7"\
superb

O These protons are not present in the boundaries -> they are
produced inside the IFR Nt

Proton Energy vs time

Proton Energy distributions
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Even if the energy of the proton is very low there is a small ffaction of protons that can have
energy enought to be considered in the range of charge pafticle detected in the IFR

They time evolution of these protons is very peculiar
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Where are these protons from!? (2) 7N
O The time evolution of the protons remaind that one of the s“llEI'B

neutrons S

Neutron Energy vs This means that they are produced by the neutrons
time distributions throught the following process (n,p) in which the
Neutron is captured and a proton is emitted

The cross section for this process falls as 1/v so it
Is more likely to happen when the neutron has low

LogE(GeV)/log(10)

energy. This is the reason for the big peak at low
proton energy.
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Radiative BhaBha background crossing
the IFR FEE boards
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Beam Compositions for FEE electronics #®=
O For BhaBha, Touschek and Pair events the particle crossing the FEE ares“nern

photons, electron, protons, neutrons and heavy nuclei 3 7
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Present layout of the IFR crates 7N

SuperB
BWD Endcap

Cé6

C4

C2

FWD Endcap

Barrel

Crate 2 BWD FWD Endcap

Crate 2 Barrel
Crate 2 is the hotter crate Crate 2 FWD

° o . x 14
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Neutron Rates for FEEs Electronics

O Rate on electronics comparable to that one on the last

[FR layer)

Crates located in the FWD have

systematically higher rates
compared to that one in the
Barrel

Crate 2 very hot compared

N\
superb
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Mean Rate for each FEE in different Crates

Graph
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@ Absorbed Dose for each FEE Crates 7N

SuperB
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Radiation Shielding S{IEErIB
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[FR-Shielding Strategy(1) 7 i,
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O We would like to implement some Boron-loaded
polyethylene, shield for neutrons:

A shield between the IFR barrel and the magnet (50mm)
Add a shield between the EMC and magnet (21mm

available)

Add a shield at small raadius for the Endcap

O Add the IRON Structures around the IFR envelope (It will
shield charged tracks and photons coming from the beam)

Thanks to Massimo for the information on the IFR structure

. : . 18
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[FR-Shielding Strategy(2)

We have to implement these
external structure

Shield between magnet and Barrel will go in that location

Valentina Santoro 3° SuperB Collaboration Meeting
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Report from Joint Belle2 and SuperB Meeting

41 participants, several talk , several discussion ...
We now agree on the main source of background ->Radiativa BhaBha
Some additional discrepancy seems now fixed

Valentina Santoro 3° SuperB Collaboration Meeting

%

2



Belle -II Full Simulation 7N
. . perB
Full simulation =

 GEANT4-based (“QGSP_BERT_HP”)

* Whole detector implemented
* No beam line elements |z|>4m (further geometry is urgent)

- No showers/neutrons from tunnel!
* Input:
—Track particles by SAD until they hit beam pipe wall, record position and momentum, then

pass that information to GEANT4 (Touschek/Beam-gas)
—BBBrem particles are tracked from IP by SAD until they hit beam pipe wall, record position

and momentum, then pass that information to GEANT4 (RBB)
—Use KoralW output directry in GEANT4 (2photon)

*First campaign was in Dec. 2011
*0.9GHz Touschek LER /2-photon

*Second Campaign in Feb. 2012 (coming soon)
*Touschek/Beam-gas/Rad. Bhabha/2-photon

We need to check:
-True event signals are not hidden by fake background hits?
-Our detectors/readout electronics are not severely damaged by radiation or neutrons?

3° SuperB Collaboration Meeting 22
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Belle -1I IFR detector 7N
KLM

RPC = Scintillator bar + MPPC for endcap
and innermost n layers in barrel

M m\ir‘ly‘--——\_“___ Optical glue

TiO, reflector

WLS fibre

) Kurarv Y11
Scintillator: :
polysteren
+ 1.5%PTP + 0.01%POPOP

f'/‘.
2 €N me
1/11;/”“

MPPC: Hamamatsu
fiber: Kuraray Y11 MC 1.3X1.3 mm 667 pixels

(used in T2K ND)

Feb. g, 2012 33
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Belle-II background situation on IFR (Endcap)™®™\

1" cdimpdign ‘ n ’
T. Uglov
E K L M 10" Belle2 General Meetiny
(19 Nov. 2011)

Neutron hits in scintillator strips
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BELLE-II IFR Background 7"\

e Detector design was started assuming 20 times -y
more background (the best knowledge at that time sunErB
based on extrapolation) \ ’
— 10%2n/cm2/10 years@endcap

— 100-1000GYy/10 years @endcap
e Background simulation studies post-validate the
‘extrapolations

E’eutron rates on BKLM

LER Touschek only
Simulation Neutron flux  Hit rate Hit rate
Layer | (Hz/cm?)  (Hz/cm®) Efficiency (Hz/cm?) Efficiency
0 2407 17.3 0.13 [.00
1 1762 12.7 0.36 1.00
2 1291 8.8 0.55 ‘ 2.3 0.88
3 785 5.6 0.71 1.4 0.92
4 504 3.6 0.81 1.0 0.94
. 5 293 2.1 0.89 0.6 0.96
Extrapolation
replace

replace Loo

Loo/o1 | twice rate

rate(Hz/cm®) ey 15
Loo z
eff. 0.38
rate(Hz/cm?) 4
Lo1 s
eff. 0.67 0.78
rate(Hz/cm?) 0 1.:5 ().() 1-8
LLo2 =
eff. 0.83 0.89 0.93 0.85

replaced by

scintillator
Estimated neutron rates on BKLM roughly matches to the extrapolation
from KEKB data; still acceptable after replacing 2 inner layers. Neutrons

T lentinaS 2oy from radiative Bhabha to be checked. " 25




Belle-1I Neutron Flux 7N

15“c‘:ampaign-

N e u t ro n fl u X 1MeV equivalent rate

1 year = 107 sec

Region Simulation Assumption used | Life time by irradiation test
ousche or ased on the assumption
(Ta hek BG) for R&D based h pti

Sensors, 2xlOn/cm2/year 10*2 /cm2/year OK for at least 10 years
readout (+0.7x10! from 2-photon) (10*3 n/cm2)

SVD Sensors, 3 x 10**/cm2/year - "\ould be OK
chips 6 ted in ATLAS/CMS)

CDC Readout ~1x10°/cm2/year 1011 /e ’)j\ PGA) is OK for at least 2(5)
Boards 6'\(\

TOP Readout ~ 5x10%%/cm2/year 63’(_6 ested

electronics \)Q

ARICH HAPD/ASIC  ~7x100/ 6\03
ECL Diodes 0\)\

OK for at least 4 years

OK for at least 40 years
5\ gt [cm2/year y

2 . : 24
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Summary and Future Plans Y i, -
superB

Radiative BhaBha, Touschek,Pair and Beam-Gas backgrounds U

have been studied in details.

The effect of these backgrounds have been also studied on our

FEEs
IFR TDR background on writing

We have to add shielding between EMC and solenoid and between
solenoid and IFR layer O to moderate neutrons

We need to add the external iron structure for neutrons and charged
tracks

The effect of background on PID will be studied in details with FullSim

All the numbers that you have seen in this presentation do not include the
safety factor (x5) that must be included to have the final background
estimation

21
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BACK-UP SLIDES
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