Performances of EMC and physics related studies

<u>Elisa Manoni</u> - INFN PG III SuperB Collaboration Meeting - LNF EMC Session, March 20th 2012

Outline

- Aim of the study, samples and bkg configurations
- HAD Breco side
 - efficiency
 - \circ γ , π^0 and B_{reco} reconstruction
- $O \quad B^+ \rightarrow K^{*+} v v \text{ signal MC studies}$
 - efficiency
 - E_{extra} shapes
 - extra- γ and $-\pi^0$ properties
- Conclusions

Aim of the study

- Test impact on physics of different bkg configurations with FastSim
- Hypotheses:
 - FastSim correctly reproduce energy resolution dependence on background
 - Radiative bhabha is the main source of bkg for EMC measurements

FastSim EMC configuration

- FastSim release V0.3.1
 - improved clustering algorithm (see Chih-hsiang talk at 02/15 EMC and 02/23 PhysTools meetings)
 - lookup tables for signal timing model: CSP integration time = 130
 µs , shaping time = 300 ns (PacEmc/preamp-models/CsI-140u-300n Luigi.txt)
- BaBar resolution for both barrel and Fwd
- Default LYSO Fwd

Background configurations

- Consider Radiative Bhabha (+ neutrons) only
- 3 bkg configuration tested
 - No machine background
 - Nominal bkg
 - 3x Nominal bkg

Bkg config/ sec/evt	signal MC	BB generic
No bkg	~ 0.12	~ 0.40
1x bkg 💊	~ 0.07	~ 1.06
3x bkg	~ 2.64	~ 5.80

- 5x Nominal Radiative Bhabha (+ neutrons):
 - current clustering algorithm too time consuming (~ 40 sec/evt for signal MC)
 - Not able to produce proper amount of signal and BB generic MC for this meeting

B⁺B⁻ generic MC

Selection and event counting

Bkg config/evts	gen	ε _{Breco} (%)	
No bkg	1x10 ⁶	1.793 ± 0.013	
Nominal bkg	1x10 ⁶	2.077 ± 0.014	
3x Nominal bkg	0.48x10 ⁶	2.92 ± 0.012	

• Selection: at least 1 B_{reco}, tight PID requirements on kaons

• In the next slides:

gammas from physics (bkg): (not) mctruth-associated to particles produced in BB decays

γ multiplicity

γ multiplicity, all cands

• Default E_{min}^{γ} cut = 20 MeV

γ angular distribution

- Bugs in PacEmc (now fixed)
 - reco γ in gap between barrel and fwd
 - barrel region: higher occupancy near bwd wrt to fwd

Should affect just γ in the last Barrel ring

elisa manoni - infn pg

γ energy

 γ's from BKG populate low E region as expected

π^0 multiplicity

• "phys" π⁰ = both gammas from BB

• "bkg" π^0 = at least 1 gamma not from BB

π^0 mass

- Huge combinatoric bkg from "background" π⁰ in the 3x configuration
- "Phys" π^0 peak shifted with increasing machine bkg

B_{reco} multiplicity and m_{ES}

• Breco multiplicity and m_{ES} tails increasing with machine bkg (higher combinatoric)

m_{ES} for B_{reco} with π^0 daughters

				m _{ES} , π ⁰	dau					no b	kg –	1x bl	kg —	<u>3x</u> bkç
Bkg config/ eff (%)	${ m B}_{ m reco} \le \pi^0$ dau	phys π^0	bkg π^0	10 ⁻³		۳۰۰_	C Ju	A CAN	LL DS				L	
No bkg	1.494 ± 0.012	1.494 ± 0.012			~	¥~			┶ᢕ╴		<u> </u>	Ľ		
1x bkg	1.765 ± 0.013	1.697 ± 0.013	0.068 ± 0.003	10-4	-									
3x bkg	2.594 ± 0.022	0.856 ± 0.013	1.739 ± 0.019											
		S A STREET	Ser Stations	5.2	5.21	5.22	5.23	5.24	5.25	5.26	5.27	5.28 I	5.29 m _{ES} (Go	5.3 eV)

$B^+ \rightarrow K^{*+} \nu \nu$ signal MC

Selection and event counting

Bkg config/ evts	$\mathbf{\epsilon}_{\mathrm{Breco}}$ (10 ⁻³)	$\mathrm{K}^{*+}(\mathrm{K}_{\mathrm{s}}\pi)$: $\mathbf{\epsilon}_{\mathrm{Breco}}\mathbf{x}\mathbf{\epsilon}_{\mathrm{Bsig}}(10^{-4})$	$\mathrm{K}^{**}(\mathrm{K}\pi^{0})$: $\mathbf{\epsilon}_{\mathrm{Breco}}\mathrm{x}\mathbf{\epsilon}_{\mathrm{Bsig}}~(10^{-4})$
No bkg	2.39 ± 0.03	2.20 ± 0.10	1.59 ± 0.09
Nominal bkg	2.55 ± 0.04	1.58 ± 0.09	1.11 ± 0.07
3x Nominal bkg	4.09 ± 0.04	0.98 ± 0.07	0.67 ± 0.06

- 2M generated events for each config
- Selection: at least 1 B_{reco}, tight PID requirements on kaons, 1 reconstructed K^{*+} in the signal side and no extra-tracks

Tracking-related effect?

- B_{reco} efficiency increase with bkg, opposite trend for B_{sig} efficiency vs bkg
- same loss in K^{*} reco for both $K_s\pi$ and $K\pi^0$ channels
- o higher amount of extra-tracks?

E_{extra} : bkg level and E_{min}^{γ}

E_{extra}: bkg vs phys

•
$$E_{\min}^{\gamma} = 30 \text{ MeV}$$

no bkg -1x bkg -3x bkg

Extra-y multiplicity

$$\circ E_{\min}^{\gamma} = 30 \text{ MeV}$$

no bkg -1x bkg -3x bkg

Extra-y angular distribution

• $E_{\min}^{\gamma} = 30 \text{ MeV}$

<u>no bkg — 1x bkg — 3x bkg</u>

Extra- γ energy

•
$$E_{\min}^{\gamma} = 30 \text{ MeV}$$

<u>– no bkg — 1x bkg — 3x bkg</u>

Extra- π^0 multiplicity

Conclusions

- Impact on physics of different bkg configurations with FastSim studied
 - radiative bhabha (+ neutrons) ; no machine bkg, 1x bkg, 3x bkg
- HAD B_{reco} side (BB generic sample)
 - higher reco efficiency mainly due to combinatoric
 - π^0 mass distribution suffering from high combinatoric contamination + peak shift with increasing bkg \rightarrow use tighter requirements on π^0 lists?
- $B^+ \rightarrow K^{*+} \nu \nu$ signal MC studies
 - O lower B_{sig} efficiency probably due to higher extra-trtacks multiplicity ?
 - E_{extra} shapes loose peaky shape at low energy with increasing bkg \rightarrow important to compare signal MC and BB generic E_{extra} shape to evaluate the discriminating power (high BB stats needed)

Extra Slides

π^0 mass, 3x machine bkg

π^0 lists

<pre>mod clone SmpMakerDefiner pi0AllDefault talkto pi0AllDefault { decayMode set "pi0 -> gamma gamma" daughterListNames set CalorNeutral daughterListNames set CalorNeutral fittingAlgorithm set "Add4" fitConstraints set "Mass" fitConstraints set "Momentum" fitConstraints set "PrimaryVertex"</pre>
prefitSelectors set "Mass 0.115:0.150"
<pre>mod clone SmpMakerDefiner pi0SoftDefaultMass talkto pi0SoftDefaultMass { decayMode set "pi0 -> gamma gamma"</pre>
daughterListNames set CalorNeutral daughterListNames set CalorNeutral preFitSelectors set "Mass 0.115:0.15"

lkto pi0SoftDefaultMass {
 decayMode set "pi0 -> gamma gam
 daughterListNames set CalorNeutral
 daughterListNames set CalorNeutral
 preFitSelectors set "Mass 0.115:0.15
 preFitSelectors set "CmsP :0.45"
 fittingAlgorithm set "Add4"
 fitConstraints set "Mass"
 fitConstraints set "Momentum"
 fitConstraints set "PrimaryVertex"

elisa manoni - infn pg

}

BaBar E_{extra} distributions

0.8

1.2