

- features of the current baseline for the IFR detector design with "binary mode" readout
 - layout of the scintillator bars in the barrel
 - layout of the scintillator bars in the endcaps updated -
 - channel number and data bandwidth estimation _____updated ____
 - test of passive <u>Single Ended</u> and active <u>Differential</u> options for "picking-up" the signals from SiPM <u>new</u>
 - block diagram of the "IFR_ABCD" front end card
 - test of "CLARO" chip for SiPM readout _______

addressing the radiation issues

- background rates estimates at the location of IFR front end electronics
- results of measurements at the INFN Laboratori Nazionali di Legnaro of neutron induced effects on some key elements of the current baseline IFR readout electronics

9.6.F. 2011-11-02

channel number estimation: barrel Presented at the nov16/17 ETD meeting at CERN

				BARREL PER MOI	DULE	PER	LAYER	DIMENSIONI MO	DULO (mm)
LAYER WIDTH	LAYER	No.Modules per layer	LAYER ENABLE	PHI	ZETA ASSUMING 110MM BARS	РНІ	ZETA	РШ	ZETA
1963	1	6	1	13	17	78	102	650	1870
1987	2	6	1	13.	17	78	102	650	1870
2050	3	6	1	13 2011-11-0	22 17	78	102	650	1870
2113	4	6		14	17	0	0	0	0
2176	5	6		× 14	17	0	0	0	0
2240	6	6	1	14	17	84	102	700	1870
2304	7	6		15	17	0	0	0	0
2367	8	6		15	17	0	0	0	0
2431	9	6		16	17	0	0	0	0
2494	10	8	1	12	17	96	136	600	1870
2569	11	8		12	17	0	0	0	0
2641	12	8		13	17	0	0	0	0
2712	13	8	1	13	17	104	136	650	1870
2784	14	8		13	17	0	0	0	0
2879	15	8	1	14	17	112	136	act. 2011-1700	1870
2973	16	8		14	17	0	0	0	0
3068	17	8		15	17	0	0	0	0
3144	18	8	1	15	16	120	128	750	1870
3296	19	8	1	16	16	128	128	800	1870
NUMBER OF MODULES per sextant:	64			TOTAL PER SEXTANT	1950	878	1072		
TOTAL NUMBER OF MODULES	384			TOTAL CHANNELS PER BARREL	11700	5268	6432		
NUMBER OF MODULES	384 3rd SuperI	3 meeting - LNF	Mar-1	BARREL 3-2012 A.	11700 Cotta Ram	5268 usino for	6432 INFN-FE/D	vip.Fisica UNIFE	Sup

channel number estimation: endcaps

ENDCAP

horizontal bars per module:	37
vertical bars per module:	51
horizontal bars per module:	36
vertical bars per module:	53
horizontal bars per module:	37
vertical bars per module:	51
channel count per module:	88,4
IOD_PER_LAYER_EC:	3
bars per layer	110
irs per layer	155
OF LAYER PER DOOR	9
OF DOORS IN ENDCAPS	<u>e.c.r. 2011-22</u> 4
	+50%
	horizontal bars per module: vertical bars per module: horizontal bars per module: vertical bars per module: horizontal bars per module: vertical bars per module: channel count per module: IOD_PER_LAYER_EC: bars per layer of LAYER PER DOOR DF DOORS IN ENDCAPS

TOTAL NUMBER OF MODULES IN ENDCAPS:

norizontal bars per door:	990
vertical bars per door:	1395
FOTAL HORIZONTAL BARS:	3960
TOTAL VERTICAL BARS:	5580
TOTAL CHANNELS IN ENDCAPS:	+12.3% 9540

FN stituto Nazionale di Fisica Nucleare

Mar-13-2012

A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE

108

data rate / data link count estimation: at nominal conditions (trigger rate 150KHz)

	BARREL					ENDCAP
NUMBER OF CRATES PER SEXTANT	2	NUMBER OF CHANNELS 999 PER CRATE		NUMBER OF CRATES PER DOOR	2	NUMBER OF CHANNELS PER CRATE 5
NUMBER OF BOARDS PER CRATE	12	NUMBER OF CHANNEL PER 83,25 BOARD	1	NUMBER OF BOARDS PER CRATE	12	NUMBER OF CHANNELS PER BOARD 5
NUMBER OF DATA LINKS PER CRATE (equal to number of data concentrator/derandomizer buffers)	2	NUMBER OF 32-CHANNEL 3 PROCESSING UNITS		NUMBER OF DATA LINKS PER CRATE (equal to number of data concentrator/derandomizer buffers)	2	NUMBER OF 32-CHANNEL PROCESSING UNITS (MOD32) PER 4 BOARD
TRIGGER RATE (kHz)	150			TRIGGER RATE (kHz)	150	
SAMPLING EREQUENCY (MHz)	50			SAMPLING FREQUENCY (MHz)	50	
SAMPLING CLOCK PERIOD (ns)	20			SAMPLING CLOCK PERIOD (ns)	20	
W: READOUT WINDOW (ns)	150			W: READOUT WINDOW (ns)	150	
n:NUMBER OF SAMPLES PER TRIGGER	8			n:NUMBER OF SAMPLES PER TRIGGER	8	
NUMBER OF HEADER/TRAILER WORDS	2			NUMBER OF HEADER/TRAILER WORDS	2	MZ
No. OF 32 BIT WORDS PER TRIGGER PER 32-CHANNEL PROCESSING UNITS (MOD32)	10			No. OF 32 BIT WORDS PER TRIGGER PER 32- CHANNEL PROCESSING UNITS (MOD32)	10	updated
EVENT SIZE IN BYTES PER EACH MOD32 UNIT	40	TOTAL NUMBER OF 432 MOD32 UNITS		EVENT SIZE IN BYTES PER EACH MOD32 UNIT	40	TOTAL NUMBER OF MOD32 UNITS 384
	BARREL EVENT SIZE in KB (TOTAL NUMBER OF BYTES PER EVENT FOR ALL MOD32 UNITS)	17280			(TOTAL NU	ENDCAP EVENT SIZE in KB UMBER OF BYTES PER EVENT FOR ALL 15360 MOD32 UNITS)
TOTAL BARREL BANDWIDTH (MB/s)	2592	TOTAL BARREL BANDWIDTH (Gbps) assuming 8b/10b encoding overhead	25,92	TOTAL ENDCAP BANDWIDTH (MB/s)	2304	TOTAL ENDCAP BANDWIDTH (Gbps) assuming 8b/10b encoding overhead
TOTAL NUMBER OF DATA LINK	24	bandwidth per link (Gbps)	1,08	TOTAL NUMBER OF DATA LINK	16	bandwidth per link (Gbps) 1,44
				+33% du	e to mo	odularity
				of data	procesi	ing units Silner
Istituto Nazionale 3r	d SuperB meeting - 1	LNF Mar-13-20)12	A.Cotta Ramusino for INFN-	FE/Dip.	Fisica UNIFE

data rate / data link count estimation: at higher luminosity (trigger rate 500KHz)

	BARREL					ENDCAP
NUMBER OF CRATES PER SEXTANT	2	NUMBER OF CHANNELS 999 PER CRATE		NUMBER OF CRATES PER DOOR	2	NUMBER OF CHANNELS PER 119 CRATE ,5
NUMBER OF BOARDS PER CRATE	12	NUMBER OF CHANNEL PER 83,25 BOARD		NUMBER OF BOARDS PER CRATE	12	NUMBER OF CHANNELS PER 99, BOARD 75
NUMBER OF DATA LINKS PER CRATE (equal to number of data concentrator/derandomizer buffers)	4	NUMBER OF 32-CHANNEL 3 PROCESSING UNITS		NUMBER OF DATA LINKS PER CRATE (equal to number of data concentrator/derandomizer buffers)	4	NUMBER OF 32-CHANNEL PROCESSING UNITS (MOD32) PER 4 BOARD
TRIGGER RATE (kHz)	500			TRIGGER RATE (kHz)	500	
SAMPLING FREQUENCY (MHz)	50			SAMPLING FREQUENCY (MHz)	50	H
SAMPLING CLOCK PERIOD (ns)	20			SAMPLING CLOCK PERIOD (ns)	20	
W: READOUT WINDOW (ns)	150			W: READOUT WINDOW (ns)	150	
n:NUMBER OF SAMPLES PER TRIGGER	8			n:NUMBER OF SAMPLES PER TRIGGER	8	
NUMBER OF HEADER/TRAILER WORDS	2			NUMBER OF HEADER/TRAILER WORDS	2	
No. OF 32 BIT WORDS PER TRIGGER PER 32-CHANNEL PROCESSING UNITS (MOD32)	10			No. OF 32 BIT WORDS PER TRIGGER PER 32- CHANNEL PROCESSING UNITS (MOD32)	10	updated
EVENT SIZE IN BYTES PER EACH MOD32 UNIT	40	TOTAL NUMBER OF 432 MOD32 UNITS		EVENT SIZE IN BYTES PER EACH MOD32 UNIT	40	TOTAL NUMBER OF MOD32 UNITS 384
	BARREL EVENT SIZE in KB (TOTAL NUMBER OF BYTES PER EVENT FOR ALL MOD32 UNITS)	17280			(TOTAL	ENDCAP EVENT SIZE in KB NUMBER OF BYTES PER EVENT FOR 15360 ALL MOD32 UNITS)
TOTAL BARREL BANDWIDTH (MB/s)	8640	BANDWIDTH (Gbps) assuming 8b/10b encoding overhead	86,4	TOTAL ENDCAP BANDWIDTH (MB/s)	7680	TOTAL ENDCAP BANDWIDTH (Gbps) assuming 8b/10b encoding 76,
TOTAL NUMBER OF DATA LINK	48	bandwidth per link (Gbps)	1,8			overhead
				TOTAL NUMBER OF DATA LINK	32	bandwidth per link (Gbps) 2,4
				+33% due	to mo	odularity
				of data p	orocesi	ng units Sunar
Istituto Nazionale 3 di Fisica Nucleare	rd SuperB meeting -	LNF Mar-13-2	2012	A.Cotta Ramusino for INFN-F	E/Dip.	Fisica UNIFE

features of the current baseline for the IFR detector design with "binary mode" readout : Presented at the nov16/17 ETD meeting at CERN

C1 Pk-Pk C2 Pk-Pk C2 Pk-Pk 100.0mV µ: 68.85107m m:25.0m M:372.0m dt 11.79m <u>Test of Single Ended option</u> for "picking-up" the signals from SiPM (by R. Malaguti, INFN-FE)

10100_800_29V5_25ns

EASIROC

SOFTWARE & TEST BOARD USER GUIDE

Version: 11 April 2011

Abstract

EASIROC (previously SPIROCO), standing for Extended Analogue Silicon pm Integrated Read Out Chip, is a 32-channel fully-analogue front end ASIC dedicated to the gain trimming and read-out of SIPA detectors.

This guide explains how to install & use the test board for EASIROC and how to operate with the associated software.

Orsay Micro Electronics Group Associated

The test was carried out by connecting a **Sensl 10100_800** SiPM (biased at 29,5V) to the EASIROC (A) development board and looking at the amplitude histogram of the dark current pulses. The yellow histogram refers to the case in which the SiPM was connected via a 12m long coaxial cable. THERE IS LITTLE DIFFERENCE WITH THE HISTOGRAM OBTAINED WITH A 0.25m LONG CABLE

The waveforms (B) shows the outputs of the LOW_GAIN stage (BLUE trace) and of the fast shaper (LIGHT BROWN trace) with the SensL connected with a 0,25m long cable and UNBIASED.

The waveforms (C) shows the outputs of the LOW_GAIN stage (BLUE trace) and of the fast shaper (LIGHT BROWN trace) with the SensL connected with the 12m long cable and UNBIASED. While there is certainly EMI noise pick up this didn't seem to affect the overall outcome of the test.

CAVEAT: only one channel was connected -> pick-up noise might increase with the number of channels connected

3rd SuperB meeting - LNF Mar-13-2012 A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE

Test of active differential option for "picking-up" the signals from SiPM (by A.C.R., INFN-FE)

buffer/adattatore di polarita' per SiPM:

trasmettitore differenziale con recupero del livello in DC di modo comune

3rd SuperB meeting - LNF

NF Mar-13-2012

A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE

Test of active differential option for "picking-up" the signals from SiPM (by A.C.R., INFN-FE)

buffer/adattatore di polarita' per SiPM:

sistema di test con ricevitore differenziale applicato alla scheda EASIROC

Angelo Cotta Ramusino INFN-Ferrara Feb 21 2012

Mar-13-2012

A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE

Test of active differential option for "picking-up" the signals from SiPM (by A.C.R., INFN-FE)

buffer/adattatore di polarita' per SiPM: applicazione alla scheda EASIROC: test results

Test of active differential option for "picking-up" the signals from SiPM (by A.C.R., INFN-FE)

buffer/adattatore di polarita' per SiPM: applicazione alla scheda EASIROC: test results qualche forma d'onda

The test was carried out by connecting a **SensL MicroSL-10050-X18** through the proposed active buffer to the EASIROC development board and looking at the amplitude

Also in this configuration the result is that THERE IS LITTLE DIFFERENCE WITH THE

HISTOGRAMS OBTAINED by connecting the SiPM to the EASIROC WITH A 0.25m

Ensl MicroSL-10050-X18

histogram of the dark current pulses.

LONG COAXIAL CABLE

features of the current baseline IFR detector design with "binary mode" readout: Candidate ASICs at present date

- (A) The EASIROC has been designed by the Omega group of LAL and it has been extensively used and tested in Ferrara thanks to evaluation board provided by LAL. It has already described in previous presentations
- (B) The RAPSODI ASIC#2 has been designed by Woitek Kucewicz of AGH University in Cracov Poland. It has already been introduced in previous presentations
- (C) The CLARO ASIC has been designed by Gianluigi Pessina and Claudio Gotti and presented at the 2nd SuperB meeting last December.

Candidate ASICs at present date

The CLARO ASIC has been recently tested in Ferrara on a PCB laid out by R. Malaguti of INFN-Ferrara.

The CLARO was connected to a SensL MicroSL-10050-X18 1mm², directly or through a 1m long coaxial cable. A SensL MicroSL-30035 9mm², was also tested to see the effect of higher input capacitance on the ASIC peaking time and noise performances.

In order to better evaluate the noise performances of the ASIC, a digital scope with a very low noise floor was used (Rohde & Schwarz RTO 1044). The SiPM connected to the ASIC has been first stimulated by photons from a blue LED and then coupled to a scintillator/WLS fiber assembly and operated as a cosmic ray detector.

The details of the tests performed on the CLARO ASIC are being presented at this meeting by Claudio Gotti.

NFN stituto Nazionale Fisica Nucleare

A.Cotta Kamusino for INFN-FE/Dip.Fisica UNIFE

Candidate ASICs at present date

addressing the radiation issues: background rates estimation at the location of IFR front end electronics Presented at the nov16/17 ETD meeting at CERN

addressing the radiation issues: measurement of neutron induced SEE in FPGA at the INFN Laboratori Nazionali di Legnaro Presented at the nov16/17 ETD meeting at CERN

addressing the radiation issues: measurement of neutron induced SEE in FPGA at the INFN Laboratori Nazionali di Legnaro

Evaluation board with an A3PE1500-PQ208 FPGA

Acknowledgements:

We exploited beam time which had been allocated by our colleagues <u>Roberto</u> <u>Stroili</u> and <u>Flavio Dal Corso</u> who also provided the information needed to estimate the neutron flux.

LNF Mar-13-2012

2 A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE

Presented at the nov16/17 ETD meeting at CERN

addressing the radiation issues:

measurement of neutron induced SEE in FPGA at the INFN Laboratori Nazionali di Legnaro

Acknowledgements:

The test design developed as his undergraduate thesis work by **Lorenzo De Santis** (University of Ferrara) in the ACTEL device occupied the FPGA for about 98%. It implemented:

- an embedded FIFO 4096 x 8 based on SRAM cellsm, for a total of **32768 SRAM bits**

- a shift register with 728 cells 8bit wide, for a total of **5824 Flip Flops**

- a UART to load and read back the memory blocks

A PC running a Labview application also provided by Lorenzo was used to repeatedly run the routine of loading known patterns into the structures and reading them back after the test interval.

A typical outcome of the test was that in ½ hour run with 4MeV deuteron energy and 40nA average current we would detect: - around 36 SRAM bit flip - between 0 and 2 FLIP FLOP upsets

NO bit flips were detected (nor expected) in the <u>configuration memory</u> (flash-based) of the FPGA: the functionality of the chip was never found impaired

If our estimation of neutron flux at the test facility are correct then for each $\frac{1}{2}$ hour run at 40nA the FPGA has been irradiated with \approx order of 1*10^10 neutrons (of the same order of the fluence resulting from 1 year of operation in SuperB) \rightarrow

• we can use a flash-based FPGA to handle L1 buffering

• we should protect the state machines with TRM but not necessarily the L1 buffer itself: data corruption rate is low

Istituto Nazionale di Fisica Nucleare

addressing the radiation issues: measurement of neutron induced SEE in FPGA at the INFN-LNL

USER GUIDE

<u>()mega</u>

EASIROC

SOFTWARE & TEST BOARD USER GUIDE

Version: 11 April 2011

Abstract

EASIROC (previously SPIROC0), standing for *Extended Analogue Silicon pm Integrated Read Out Chip*, is a 32-channel fully-analogue front end ASIC dedicated to the gain trimming and read-out of SiPM detectors.

This guide explains how to install & use the test board for EASIROC and how to operate with the associated software.

Orsay Micro Electronics Group Associated

Presented at the nov16/17 ETD meeting at CERN

A new test is foreseen at the neutron test facility in Legnaro toward the end of this month. The test is meant to evaluated the SEE rate in the DACs of the EASIROC chip and evaluate the TID dose effects on the analog signal processing units of the ASIC.

We also plan to look for TID effects on the op amps which could be used for the active "pick-up" option mentioned above.

We would stack the ACTEL FPGA board on top of the OMEGA board, in such a way to have correlated measurements failure rate measurements (the FPGA acting as a radiation monitor). In such a way the FPGA would act as some sort of neutron dose monitor, to be checked against the calibration data from the Legnaro facility.

Prior to the irradiation tests:

1) the EASIROC ASIC provided by LAL/OMEGA was characterized (thanks to Roberto Malaguti) in order to record:

- the transfer curve of the input DACs
- the S-curve for a set of input channels
- the current consumption

2) the EASIROC test board was modified to isolate the ASIC from the on-board FPGA in such a way that the serial programming stream for the initialization of the chip could be provided by a microcontroller board located outside the bunker

3) the firmware for the microcontroller (R.M.) and a Labview program (A.C.R.) were prepared to allow an operator to periodically send and readback the configuration stream to the configuration registers of the EASIROC (57 words of 8 bit each for a total of 456 bit): these registers were written and checked after a period of about $\frac{1}{2}$ hour to look for SEU

4) a suitable support was realized to couple the EASIROC board to the FPGA board in such a way that the FPGA and the ASIC were aligned (and separated by about 13mm); the FPGA board was used in this case as a neutron fluence monitor

5) finally a set of op-amp to be used in the front end differential driver has been fastened on top of the FPGA

Mar-13-2012

A.Cotta Ramusino for INFN-FE/Dip.Fisica UNIFE

WEGA -	1,187020 767 0,040584	586	integrated irradiation	charge (µC)	total errors in the FIFO section of the FPGA design	total errors in the shift register section of the FPGA design
fa (cm)	0,9 0	,41	60683	4104	752	26
ta (cm)	0,9	0,4	total Yeld/sr/uC @ Ed=4 Mev hardi	ness factor @ Ed=4 MeV		
a * beta = (cm^2)	0,81 0,	164	1.02E+09	1,146		
tance d = (cm)	0,7 2,648924	2				
nominator (cm^2)	31 16,1632	If the estimation of 1	neutron flux	at the CN fac	cility in Legnaro	is correct then we h
mero totale di neutroni attraverso DUT	ACTEL EASIRO	exposed the devices to	o a total flux	of:		
tutta la durata del test	4,96E+12 1,69E	≈ 4 $\times 10^{12}$ neutrons	at the FPGA	location		
tutta la durata del test = fluenza@DUT	6,12E+12 1,03E	12 1 7 * 10 ll neutrong	at the EASI	POC location		
		$\sim 1.7 \times 10^{-1}$ lieutons			1	
D depth: ft Reg. Depth:	4096 728	in about I / hours, dui	ing which w	e have detecte	ed:	
d width:	8	- NO SINGLE EVEN	NT EFFEC	FS HAVE BE	EN OBSERVEI) FOR THE EASIRO
mero di bit flip in FIFO> :	752,0000	-752 errors in the RA	M based sec	tion of the desi	ign	
Mb:	8	- 26 errors in the shift	register inst	antiated in the	FPGA fabric	
imero di bit flip in Shift Reg> : Million Flip Flop:	26,0000 4464,2857	(the beam intensity was	lower than th	at of the proviou	ns tosts basause th	o doutorium hottle hoos
di: "Overview of iRoC Technologies Report		almost exhausted during	g the last day)	at of the previo	us tests because th	e deuter fum bottle becan
cember 2005"						3
cember 2005" "Radiation Results of the R Test of Actel, Xilinx and era FPGA instances"		cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips	reference in New Yo n/cm^2/i	fluence: fluence at ground level ork City: fluence_NYC = 14 our	FIT: Failure In Time: failures in 10^9 hours. FIT = Sigma_C * fluence_NYC * 10^9	<u>ecr. 2011-11-02</u>
adation Results of the SER Test of Acter PPGA "Radiation Results of the Test of Actel, Xilinx and era FPGA instances" nostro caso:		cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips	reference in New Yo n/cm^2/i	: fluence: fluence at ground level ork City: fluence_NYC = 14 iour ref_fluence/hour	FIT: Failure In Time: failures in 10^9 hours. FIT = Sigma_C * fluence_NYC * 10^9	a.c.r. 2011-11-02
"Radiation Results of the SER Test of Acter PPGA "Radiation Results of the t Test of Actel, Xilinx and era FPGA instances" nostro caso: 250-FIFO section	FIFO	cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips Sigma_C [cm^2] 1,229E-10	reference in New Y n/cm^2/l	rfluence: fluence at ground level rk City: fluence_NYC = 14 nour ref_fluence/hour 1,400E+01	FIT: Failure In Time: failures in 10^9 hours. FIT = Sigma_C * fluence_NYC * 10^9 FIT 1,721E+00	<u>acr. 2011-11-02</u>
"Radiation Results of the Test of Actel, Xilinx and rra FPGA instances" nostro caso: 250-FIFO section 250-SHIFT Register section	FIFO SHIFT REGIS	cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips Sigma_C [cm^2] 1,229E-10 TER 4,250E-12 cross section per EIEO Mb Sigma Mb = No. et al	reference in New Y n/cm^2/I	tiluence: fluence at ground level ork City: fluence_NYC = 14 nour ref_fluence/hour 1.400E+01 e in Time)	FIT: Failure In Time: failures in 10^9 hours. FIT = Sigma_C * fluence_NYC * 10^9 FIT 1,721E+00 5,950E-02 Our tors at INI on a ProASIC3	a.c.r. 2011-11-02
manion Results of the SER Fest of Acter PPGA rember 2005" "Radiation Results of the Test of Actel, Xilinx and era FPGA instances" nostro caso: 250-FIFO section 250-SHIFT Register section inisco:	FIFO SHIFT REGIS	cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips Sigma_C [cm^2] 1,229E-10 TER 4,250E-12 cross section per FIFO Mb: Sigma_Mb = No_of_er 10^6 / (fluence * N_FIFO_bit)	reference in New Yu n/cm^2/I FIT (Failur rers* figure result	ref_fluence at ground level ovk City: fluence_NYC = 14 ref_fluence/hour 1.400E+01 e in Time) ing from our	FIT: Failure In Time: failures in 10 ^{.0} 9 hours. FIT = Sigma_C * fluence_NYC * 10 ^{.0} 9 FIT 1,721E+00 5,950E-02 Our too: at LNL on a ProASIC3 device a3p250	IROC test on a ProASIC3 E device a9pE600
Radiation Results of the SER Test of Acter PPAA "Radiation Results of the .Test of Actel, Xilinx and rra FPGA instances" nostro caso: 250-FIFO section 250-SHIFT Register section inisco:	FIFO SHIFT REGIS	cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips Sigma_C [cm^2] 1,229E-10 IER 4,250E-12 cross section per FIFO Mb: Sigma_Mb = No_of_er 10^6 / (fluence * N_FIFO_bit) Sigma_Mb	FIT (Failur figure result test is 30 ti	effuence: fluence at ground level ork City: fluence_NYC = 14 nour ref_fluence/hour 1.400E+01 e in Time) ing from our mes smaller	FIT: Failure In Time: failures in 10^9 hours. FIT = Sigma_C * fluence_NYC * 10^9 FIT 1,721E+00 5,950E-02 our text at LNL on a ProASIC3 device a3p250 FIT per million bit of embedded RAM	IROC test on a ProASIC3 E device a SpE600
readiation Results of the SER Fest of Acter PPGA rember 2005" "Radiation Results of the R Test of Actel, Xilinx and era FPGA instances" nostro caso: 0250-FIFO section 0250-SHIFT Register section inisco:	FIFO SHIFT REGIS	cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips Sigma_C [cm^2] 1,229E-10 1,229E-10 4,250E-12 cross section per FIFO Mb: Sigma_Mb = No_of_er 10^6 / (fluence * N_FIFO_bit) Sigma_Mb 3,75131E-09	FIT (Failur figure result test is 30 ti	fluence: fluence at ground level ork City: fluence_NYC = 14 nour ref_fluence/hour 1.400E+01 e in Time) ing from our mes smaller ublished by	FIT: Failure In Time: failures in 10^9 hours. FIT = Sigma_C * fluence_NYC * 10^9 FIT 1,721E+00 5,950E-02 Our toer at LNL on a ProASIC3 device a3p250 FIT per million bit of embedded RAM 5,252E+01	IROC test on a ProASIC3 E device a SpE600 FIT per million bit of embedded RAM 1580
Induction Results of the SER Test of Acter PPAA "Radiation Results of the "Test of Actel, Xilinx and rra FPGA instances" nostro caso: 250-FIFO section 250-SHIFT Register section inisco: 250: Fifo cross section per Mbit inisco:	FIFO SHIFT REGIS	cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips Sigma_C [cm^2] 1,229E-10 TER 4,250E-12 cross section per FIFO Mb: Sigma_Mb = No_of_er 10^6 / (fluence * N_FIFO_bit) Sigma_Mb 3,75131E-09 cross section per M lipflops: Sigma_Mff = No_of	FIT (Failur figure result test is 30 ti than that p	ref_fluence: fluence at ground level ovk City: fluence_NYC = 14 ref_fluence/hour 1.400E+01 e in Time) ing from our mes smaller ublished by	FIT: Failure In Time: failures in 10-9 hours. FIT = Sigma_C * fluence_NYC * 10-9 FIT 1,721E+00 5,950E-02 our toet at LNL on a ProASIC3 device a3p250 FIT per million bit of embedded RAM 5,252E+01	IROC test on a ProASIC3 E device a3pE600 FIT per million bit of embedded RAM 1580
 Radiation Results of the SER Test of Actel PPOA ember 2005" "Radiation Results of the Test of Actel, Xilinx and rra FPGA instances" nostro caso: 250-FIFO section 250-FIFO section nisco: 250: Fifo cross section per Mbit nisco: 	FIFO SHIFT REGIS	cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips Sigma_C [cm^2] 1,229E-10 4,250E-12 cross section per FIFO Mb: Sigma_Mb = No_of_er 10^6 / (fluence * N_FIFO_bit) Sigma_Mb 3,75131E-09 cross section per M flipflops: Sigma_Mff = No_of * 10^6 / (fluence * N_flipflops) Sigma_Mff	FIT (Failur figure result test is 30 ti than that p ACTEL for	effuence: fluence at ground level prk City: fluence_NYC = 14 nour ref_fluence/hour 1.400E+01 e in Time) ing from our mes smaller published by r a similar	FIT: Failure In Time: failures in 10^9 hours. FIT = Sigma_C * fluence_NYC * 10^9 FIT 1,721E+00 5,950E-02 our toet at LNL on a ProASIC3 device a3p250 FIT per million bit of embedded RAM 5,252E+01 FIT per million Timp flop	IROC test on a ProASIC3 E device aSpE600 FIT per million bit of embedded RAM 1580
"Radiation Results of the SER Test of Acter PPAA ember 2005" "Radiation Results of the Test of Actel, Xilinx and rra FPGA instances" nostro caso: 250-FIFO section 250-SHIFT Register section nisco: 250: Fifo cross section per Mbit nisco: 250: ShiftRegister cross section per Mflipflon	FIFO SHIFT REGIS	cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips Sigma_C [cm^2] 1,229E-10 4,220E-12 cross section per FIFO Mb: Sigma_Mb = No_of_er 10^6 / (fluence * N_FIFO_bit) Sigma_Mb 3,75131E-09 cross section per M flipflops: Sigma_Mff = No_of * 10^6 / (fluence * N_flipflops) Sigma_Mff 7.29738E-10	FIT (Failur reference in New Yo n/cm^2/l Figure result test is 30 ti than that p ACTEL for FPGA te	fluence: fluence at ground level ork City: fluence_NYC = 14 nour ref_fluence/hour 1.400E+01 e in Time) ing from our mes smaller published by r a similar sted with	FIT: Failure In Time: failures in 10^9 hours. FIT = Sigma_C * fluence_NYC * 10^9 FIT 1,721E+00 5,950E-02 our toar at LNL on a ProASIC3 device a3p250 FIT per million bit of embedded RAM 5,252E+01 FIT per million time flep 1,022E+01	IROC test on a ProASIC3 E device a SpE600 FIT per million bit of embedded RAM 1580
 Radiation Results of the SER Test of Actel PPAA ember 2005" "Radiation Results of the Test of Actel, Xilinx and rea FPGA instances" nostro caso: 250-FIFO section 250-SHIFT Register section nisco: 250: Fifo cross section per Mbit nisco: 250: ShiftRegister cross section per Mflipflop 	FIFO SHIFT REGIS	cross section per chip: Sigma_C = No_of_errors / (fluence * C) with C= number of chips Sigma_C [cm^2] 1,229E-10 TER 4,250E-12 cross section per FIFO Mb: Sigma_Mb = No_of_er 10^6 / (fluence * N_FIFO_bit) Sigma_Mb 3,75131E-09 cross section per M flipflops: Sigma_Mff = No_of * 10^6 / (fluence * N_flipflops) Sigma_Mff 7,29738E-10	FIT (Failur n/cm^2// FIT (Failur figure result test is 30 ti than that p ACTEL for FPGA te 14MeV neut	ref fluence: fluence at ground level rvk City: fluence_NYC = 14 fluence/hour 1.400E+01 e in Time) ing from our mes smaller published by r a similar sted with rons.	FIT: Failure In Time: failures in 10/9 hours. FIT = Sigma_C * fluence_NYC * 10/9 FIT 1,721E+00 5,950E-02 our text at LNL on a ProASIC3 device a3p250 FIT per million bit of embedded RAM 5,252E+01 FIT per million ##p flep 1,022E+01	IROC test on a ProASIC3 E device a3pE600 FIT per million bit of embedded RAM 1580 FIT per million flip flop 889

EASIROC test results:

- \circ integrated neutron fluence at the EASIROC location : $\approx 1.7 * 10^{11}$ neutrons
- TID effects: change in DAC characteristics due to irradiation : undetectable

The plot shows the transfer curves, taken BEFORE irradiation, for the input DACs for the channels 0 through 8. Channel 0 was damaged by us at the beginning of the test and can be neglected.

The plots created after irradiation show no detectable differences; just one measurement point, at DAC count 140 for channel 7, was off by 130mV. At all other points the differences were within the systematic error range

INFN

Fisica Nucleare

29

EASIROC test results:

- integrated neutron fluence at the EASIROC location : \approx 1.7 * 10¹¹ neutrons
- TID effects: change in S-curves due to irradiation : minor

The plots, by <u>R. Malaguti</u>, show the S-curves, taken BEFORE and AFTER irradiation. In general they shows shifts which could be compatible with systematic errors.

A couple of S-curves are shown in more details on the next slide

EASIROC test results:

- integrated neutron fluence at the EASIROC location : \approx 1.7 * 10¹¹ neutrons
- **o** TID effects: change in S-curves due to irradiation : minor

The plots shown are representative of channel with little (left, channel 6) or no (right, channel 13) difference between BEFORE and AFTER irradiation.

addressing the radiation issues: preparation for next irradiation tests

For the coming irradiation tests we are developing dedicated carrier cards (LEFT) for the EASIROC ASIC and auxiliary cards (RIGHT) to detect (and protect) Single Event LatchUp. The auxiliary card couls be used also for the CLARO and the RAPSODI ASIC#2

- LNF Mar-13-2012

32