R&D in Bologna

A.Montanari for Bologna IFR group

III SuperB Collaboration Meeting Frascati, 21 March 2012

Outline

1)New results on tests of muon response of IFR scintillator bar readout with FBK photosensors (*G.Balbi, A.M., G.Torromeo, N.Tosi*)

2)Highlights on simulation of scintillator bar with FLUKA

(T.Rovelli, S.Lo Meo)

Measure SiPMs response on a IFR bar prototype

 light detection efficiency has implications on detector design (number of WLS fibers, geometry, SiPM signal collection..)

CAVEAT:

- better optical couplings with respect to previous measurements...but still critical
- still preliminary measurements !
- cosmic muon trigger not optimized

Custom readout and control system

• Versatile system for 8 channels:

SiPM from Bologna

FBK 1x1 mm² old 2008 sample, model C, ..not state of the art.. 50 μm pixel

Caveat: not optimized optical coupling

Test IFR scintillator bar

- Fermilab scintillator bar:
 - 250x40x10 mm³
 - one straight groove on top
- WLS: Kuraray 1 mm diameter
 - glued inside the groove
 - not diamond cut
 - one end aluminized

Caveat: more attenuation is expected in longer bars !

FBK-Bologna @ 32.5 V: dark noise

Pedestal = 2658 (ADC channels)

FBK-Bologna @ 32.5 V: gain

Frascati, 21 March 2012

Gaussian fit on each peak

Gain = 7.9 (ADC channels)

FBK-Bologna @ 32.5 V: MIP response

Fired pixels = detected photons + xtalk + afterpulses:

FBK-Bologna @ 33.5 V

FBK-Bologna @ 34.5 V

Noise rate: FBK 2008

Summary

SiPM @ Bias	MIP response	Noise Rate (≥ 0.5 px)	Noise Rate (≥ 4.5 px)
FBK @ 32.5 V	35 px/µ	1.6 MHz	4.8 kHz
FBK @ 33.5 V	47 px/µ	1.7 MHz	25 kHz
FBK @ 34.5 V	54 px/µ	1.8 MHz	110 kHz

Notes:

- MIP response include contributions from cross talk and afterpulse
- Noise rates on integrated signal (70 ns)

- Good performance of old (2008) FBK 50 μm
- On a short scintillator bar light detection is very satisfactory: but need to study on longer bars with full light collection chain !
- Dark count rate ~ 25 kHz at ≥ 4.5 pixels threshold (corresponding to a MIP efficiency ≥ 99 %)
- Need to study total irradiation dose effects on dark count rate
- Need to study long term stability of devices

- setup a detailed simulation of light production, propagation and detection in a prototype of a scintillator bar (FLUKA)
- cross check expected results from simulation with data collected from a real prototype: tune simulation free/unknown parameters
- use simulation setup to study different geometries and optical couplings
- still preliminary results..

Prototype setup

- use FLUKA (version 2011.2.10)
- simulation of bar prototype used to test MIP response (25x4x1 cm³)

Prototype setup

Prototype setup

Photons at fiber output

- More density in fiber core:
 - SiPM allignment less critical..

Photons arrival times

If scintillator and WLS fiber decay times are NOT simulated:

Photons arrival times

- Adding decay times simulation:
 - scintillator: τ = 2 ns
 - WLS fiber: τ = 7.5 ns

Photons detected by SiPM

- About 100 detected photons/MIP
 - simulation not yet tuned

• First version of simulation was setup

• Not yet tuned through cross check with data

- O(100) detected photons:
 - not too far from real data...promising !