
S. Pardi
Frascati, 2012 March 19-23

GPGPU Evaluation – First experiences in

Napoli

Silvio Pardi

S. Pardi
Frascati, 2012 March 19-23

Goal of our preliminary tests
•Achieve know-how on GPGPU architectures in order to test the versatility
and investigate the possible adoption for some specific tasks interesting for
SuperB.

•multi-core Technology
•High speed and complex
processing unit
• General Purpose

•many-core technology
• Hundred of simple Processing Units
• Designed to match the SIMD
paradigm (Single Instruction Multiple
Data)

S. Pardi
Frascati, 2012 March 19-23

The Hardware Available in Napoli

1U rack NVIDIA Tesla S2050
 4 GPU Fermi
 Memory for GPU: 3.0 GB
 Core for GPU: 448
 Processor core clock: 1.15 GHz

2U rack Dell PowerEdge R510
Intel Xeon E5506 eight-
core @ 2.13 GHz
32.0 GB DDR3
8 hard disk SATA (7200
rpm), 500 GB

S. Pardi
Frascati, 2012 March 19-23

•Cuda compilation tools, release 4.0, V0.2.1221

•NVIDIA-Linux-x86_64-270.41.34.run

•cudatoolkit_4.0.17_linux_64_rhel5.5.run

•gpucomputingsdk_4.0.17_linux.run

ENVIRONMENT

S. Pardi
Frascati, 2012 March 19-23

Tuning for lazily modality removal

The firsts test on the Tesla S2050 GPU with CUDA C show a starting
overhead ~2 second due the “context” creation needed by the
CUDA toolkit. The context is create on demand (lazily) and de-
allocated when is not used.

SOLUTIONS (Suggested by Davide Rossetti):

1. Before the CUDA 4, Create a dummy process always active that
keeps alive the CUDA context “nvidia-smi -l 60 -f /tmp/bu.log”

2. Since CUDA ver. 4 use the -pm (persistence-mode) option from
the nvidia-smi command to activate the GPU context.

S. Pardi
Frascati, 2012 March 19-23

➢ GPU Memory Allocation (CudaMalloc)

➢ Data transfer between CPU and GPU (CudaMemCopy H2D)

➢ CUDA Kernel execution

➢ Data transfer between GPU and CPU (CudaMemCopy D2H)

IBRID code: combination of standard C
sequential code with parallel kernel in
CUDA C.

Each code needs the following main steps:

 CUDA C

S. Pardi
Frascati, 2012 March 19-23

CUDAMALLOC Benchmark

BYTE TIME (ms)

1 0,139

1KB 0,139

100KB 0,139

1MB 0,147

10MB 0,245

100MB 24,781

1GB 170,518

1.72GB 243,123

S. Pardi
Frascati, 2012 March 19-23

CUDAMEMCPY Benchmark

BYTE TEMPO (ms)

1 0,051

100KB 0,145

1MB 0,756

10MB 4,654

100MB 42,283

1GB 482,838

2.4GB 1.136,858

2.7GB 1.332,238

Max bandwidth achieved
: 16Gbit/s

S. Pardi
Frascati, 2012 March 19-23

Exercise: B-meson reconstruction like algorithm

Combinatorial problem

Problem Modellization: given N
quadrivectors (spatial components and
energy), combine all the couple without
Repetition. Then calculate the mass of the
new particle and check if the mass is in a
range given by input.

GOAL: Understand the impact, benefits and
limits of using the GPGPU architecture for
this use case, through the help of a toy-
model, in order to isolate part of the
computation.
The algorithm has been implemented in
C CUDA

S. Pardi
Frascati, 2012 March 19-23

Parallel
implementation

Start

Read Input

Thread 0:
Sum of quadrivector: 0, 1

m2=E2-px2-py2-pz2

Thread 1:
Sum of quadrivector: 0 , 2

m2=E2-px2-py2-pz2

Thread k:
Sum of quadrivector N-2 , N-1

m2=E2-px2-py2-pz2
…

m0-Δ<m<m0+Δ

π0 found

SI

m0-Δ<m<m0+Δ

π0 found

SI

m0-Δ<m<m0+Δ

π0 found

SI

NO NO NO

Sequential code(CPU)
Parallel code (GPU)

CUDA MALLOC GPU
CUDA MEMCOPY CPU->GPU

MEMCOPY
GPU->CPU

S. Pardi
Frascati, 2012 March 19-23

Cuda implementation (1/2)

GPU Function

Memory Allocation on GPU
Data transfer from CPU

to GPU

Run GPU Kernel

GPU Memory Free

Data transfer back
from GPU to CPU

S. Pardi
Frascati, 2012 March 19-23

Cuda Kernel (2/2)

Thread ID Computation

Quandrivector Composition

S. Pardi
Frascati, 2012 March 19-23

Testing Algorithm

Configuration
parameters
512 threads for block.
Advanced tuning can
improve these results

Particles Seq Parallel

20 0,013 ms 0,351 ms

100 0,159 ms 0,457 ms

1.000 15,211 ms 0,621 ms

10.000 1.422,742 ms 19,699 ms

30.000 10.637,217 ms 170,23 ms

40.000 18.613,341 ms 301,756 ms

45.000 23.266,988 ms 380,989 ms

Sequential

Parallel

S. Pardi
Frascati, 2012 March 19-23

Some Ideas

The first experience suggest to continue the investigation expecially in the
following ways:

Tuning the memory management: Investigate the possibility to Overlapping
Data Transfers and Computation through Async and Stream APIs.

Tuning the Grid/Block/Threads topology

Consider to rearrange the algorithms in term of operations per threads.

S. Pardi
Frascati, 2012 March 19-23

Conclusion

In Napoli we started to test the NVIDIA GPGPU architecture and we are
investigating how to port HEP code on these architectures.

A first experience using a toy algorithm has show several aspects to take in
account in GPU programming:
•Overhead management
•Memory management
•Algorithm re-engineerization
•Work distribution for each Thread
•Block and Thread topology definition

A lot of work is still due in order to achieve a full understanding of the architecture
and the real benefits achievable. There are several work in progress.

S. Pardi
Frascati, 2012 March 19-23

END

S. Pardi
Frascati, 2012 March 19-23

Comparison malloc e cudaMalloc

S. Pardi
Frascati, 2012 March 19-23

Algorithm for delegate a couple
of vector to each Thread

S. Pardi
Frascati, 2012 March 19-23

S. Pardi
Frascati, 2012 March 19-23

