
1

Ganga analysis framework:
procedures, use case design and

system capabilities

Cristian De Santis is presenting material of
Armando Fella and Andrea Galvani

on behalf of
SuperB Distributed Computing group

2

Presentation Layout

● Ganga framework overview

● Analysis framework design

● Use case modeling

● Ganga SuperB plugin

● Work planning and conclusion

3

Ganga overview

● Ganga is a user-friendly job management tool.

– Jobs can run locally or on a number of batch systems and grids.

– Easily monitor the status of jobs running everywhere.

– To change where the jobs run, change one option and resubmit.

● Ganga is the main distributed analysis tool for LHCb and ATLAS.

– Experiment-specific plugins are included.

● Ganga is an open source community-driven project:

– Core development is joint between LHCb and ATLAS

– Modular architecture makes it extensible by anyone

– Mature and stable, with an organized development process

Thanks to J.Moscicki
for stolen slides

4

Ganga Backend

Local PC

PBSPBS LSFSGE

PANDA

• In practice users deal with multiple computing backends
• “Configure once, run everywhere”

DEBUG

 TEST

 FULL RUN

5

6

● 1. Hello World Locally

● j = Job()
● j.backend = Local()
● j.submit()

● 2. Hello World on Nordu Grid

● j = Job()
● j.backend = NG()
● j.submit()

● 3. Hello World on EGI

● j = Job()
● j.backend = LCG()
● j.submit()

7

8

Job persistency: ~/gangadir

● Job-related files and information are kept organized in
the Ganga work directory: ~/gangadir

● It is created at the first launch in user home directory

Metadata of jobs

Data of jobs

9

Analysis step by step I

● Working on User Interface (UI)

● User creates his own working directory including the executable script,
configuration files and all other things needed for analysis or personal
production job

● Executable script must comply some constraints explained later on
input and output file placement on remote node

● Job preparation from ganga interface

● User launches Ganga from UI. He/she can select the input dataset,
declare the events to be processed per job, optionally can create the
output dataset, define work dir and executable path, finally submit the
bulk job. Ganga system will compress and tar the working directory.

● Job run time and stage-in procedure

● SuperB job wrapper decompress user software package, checks the
environment, transfers requested input files to the conventional area on
worker node and launchs the user executable script.

10

Analysis step by step II
● Stage out

● At job completion, all the output files residing into the conventional area
will be transferred and registered in GRID to output site (default:
submission site). A text file containing the list of logical file names
(LFN) job output files is transferred to UI via outputsandbox together
with the job logout file.

● Job Monitoring and output retrivial

● From ganga interface users can:
– check jobs status
– manage jobs: kill, resubmit, copy, etc.
– check output files and inspect gangadir

● Data movement

● User can perform data transfer of its own dataset via a set of specific
methods implemented into SuperB ganga plugin.

Analysis job workflow

User Software
Tarball

Creation on UI

12

Use cases

● Analysis/reduction:
– Official FastSim/FullSim production dataset analysis
– Personal FastSim/FullSim production dataset analysis
– Generic analysis dataset analysis

● Personal Simulation Production (FastSim and FullSim)

● Dataset management
– Monitor, research, creation, deletion, status management
– Dataset transfer

Dataset Manager

● Provides the following methods:
● createDataset() job output dataset creation. Interactive

guide to dataset creation is available
● deleteDataset() to delete empty ('prepared') dataset
● downloadDataset() to retrieve all files belonging to a

dataset from GRID to submission machine
● badDataset() to set dataset status to 'bad'
● closeDataset() to set dataset status to 'close'
● openDataset() to set dataset status to 'open'
● showDatasetDetail() show all metadata of your datasets

Dataset status

● Prepared
● New dataset is in 'prepared' status
● Can be deleted

● Open
● Dataset with at least one output file associated
● A dataset automatically become 'open' at first submission

● Closed
● No more usable as output dataset
● It is not possible append new output files

● Bad
● Cannot be used as input dataset in analysis job
● An automatic cleanup procedure will delete such a dataset

Official production analysis (FastSim)

● Create a new job object and give it a name:

j = Job()

j.name = 'myJob'

● Assign SBApp as the application used by the job:

j.application = SBApp()

● Set the directory where all the job related files (executable, configuration, etc.) are located.
Ganga will create a tarball and ship it in the inputsandbox:

j.application.sw_directory =
'/storage/gpfs_superb/users/ganga_util/GangaSuperB/test/analysisSoftwa
re'

● Executable *relative* path wrt user job package eg: ./analysisExe.sh

j.application.exepath = 'analysisExe.sh'

● Choose your work session type between analysis and personal production:

j.inputdata = SBInputAnalysis() # j.inputdata = SBInputPersonalProduction()

Official production analysis (FastSim)

● Input dataset selection:

j.inputdata.getDataset()

● You can filter the results interactively or identify univocally the dataset via dataset_id:

j.inputdata.getDataset(
prod_series='2010_September_311', prodscript='generic')

j.inputdata.getDataset(dataset_id='4f394214a328d55f2900003b')

● Example of Ganga output:

+----+--------------------+------------+--------------+------+---------------------+---------------+--------+
| id | prod_series | prodscript | generator | dg | tcl | analysis_type | status |
+----+--------------------+------------+--------------+------+---------------------+---------------+--------+
| 0 | 2010_September_311 | Generics | B+B-_generic | DG_4 | MixSuperbBkg_NoPair | HadRecoil | closed |
| 1 | 2010_September_xyz | Generics | B+B-_generic | DG_4 | MixSuperbBkg_NoPair | HadRecoil | closed |
+----+--------------------+------------+--------------+------+---------------------+---------------+--------+
choose dataset: 0

Chosen dataset details:
analysis_type: HadRecoil | generator: B+B-_generic
creation_date: 2012-02-13 18:10:49.885510 | id: 0
dataset_id: 4f394214a328d55f2900003b | occupancy: 121915466273
dg: DG_4 | occupancy_human: 113.5GiB
evt_file: 50000 | prod_series: 2010_September_311
evt_tot: 94500000 | prodscript: Generics
evt_tot_human: 94.5M | status: closed
files: 1890 | tcl: MixSuperbBkg_NoPair

Official production analysis (FastSim)
● The framework permits to perform a unique bulk submission composed by n subjobs.

● The interface will ask for:

● How many events need to be analyzed ?

Insert the number of overall events (zero for all):
enter an integer or (q)uit: 510000

Total job input size: 673.8MiB
Total selected number of events: 550.0K
Total number of involved logical files: 11

● Adjust your job to GRID constraints:

Insert the maximum number of events for each subjob.
- maximum output file size is 2GiB.
- suggested maximum job duration 12h.
- maximum input size job is 10GiB.
- at least 50000 (number of events per file).

enter an integer or (q)uit: 270000

Official production analysis (FastSim)
● If you need to create an output bookkeeped dataset containing your submission output,

instruct Ganga to assign that output files to an (existing) dataset.

- create a new dataset using DatasetManager class

- j.outputdata = SBOutputDataset()

- j.outputdata.setOutputDataset(dataset_id, file_type)

● Shell interactive example:

● In the case each subjob creates multiple files owned by different dataset, the file name per
dataset should be reported to the system:

Enter a output file pattern: HadRecoil.root (wild card accepted)

● Ganga will print a summary of your 'prepared' and 'open' datasets, so you can choose one of
them.

Choose the dataset:
+----+--------------------+------------+--------------+------+---------------------+---------------+--------+
…	…	…	…	…	…	…	…
34	myOutputDataset01	Generics	B+B-_generic	DG_4	MixSuperbBkg_NoPair	HadRecoil	open
35	test_01_name	Generics	B+B-_generic	DG_4	MixSuperbBkg_NoPair	HadRecoil	open
+----+--------------------+------------+--------------+------+---------------------+---------------+--------+
enter an integer or (q)uit: 35

● Then assign a backend and submit:

j.backend=LCG()

j.submit()

Personal Production (FastSim)

Create a new job object and give it a name:
● j=Job()

● j.name = 'myJob'

Assign SBApp as the application used by the job:
● j.application = SBApp()

Set the directory where your sources are located. Ganga
will create a tarball and ship it in the inputsandbox:

● j.application.sw_directory =
'/storage/gpfs_superb/users/<user>/FastSim/V0.3.1_test/'

Executable *relative* path after software unpacking. eg:
analysisExe.sh

● j.application.exepath = 'workdir/pacBtoKstar0NuNu-dg4-3-
ganga.csh'

Personal Production (FastSim)

Assign SBInputDatasetProduction to the job.
● j.inputdata = SBInputDatasetProduction()

Set number of jobs.
● j.inputdata.number_of_subjobs = 3

This method try to guess your software version. If it finds FastSim
software it asks for background frame as input.

● j.inputdata.findSoftwareVersion()

Local machine backend, really useful for testing purpose (with little
number of jobs). Recommended.

● j.backend=Local()

Grid backend:
● j.backend=LCG()

Now you could type j for summary
● j

If it's all ok, type j.submit()
● j.submit()

Example 'j' output
In [4]:j

Out[4]: Job (

 status = 'running' ,

 name = 'myJob' ,

 inputdir = '/home/SUPERB/user/gangadir/workspace/user/LocalXML/50/input/' ,

 do_auto_resubmit = False ,

 outputdir = '/home/SUPERB/user/gangadir/workspace/user/LocalXML/50/output/' ,

 outputsandbox = [] ,

 id = 50 ,

 info = JobInfo (

 monitoring_links = [] ,

 uuid = '68574699-086-1331750007-8' ,

 submit_counter = 1 ,

 monitor = None

) ,

 outputfiles = [] ,

 inputdata = SBInputPersonalProduction (

 input_mode = 'dir' ,

 input_path = [u'lfn:/grid/superbvo.org/production/FastSim/bkgframe/1326811309'] ,

 runSite = ['INFN-T1', 'RAL-LCG2', 'IN2P3-CC'] ,

 number_of_subjobs = 3 ,

 source_sim_type = 'FastSim'

) ,

Example 'j' output
 merger = TextMerger (

 files = [severus.log, output_files.txt] ,

 compress = True ,

 ignorefailed = True ,

 overwrite = False

) ,

 inputsandbox = [] ,

 application = SBApp (

 exepath = 'workdir/pacBtoKstar0NuNu-dg4-3-ganga.csh' ,

 sw_directory = '/storage/gpfs_superb/users/<user>/FastSim/V0.3.1_test'

) ,

 outputdata = None ,

 time = JobTime (

 timestamps = '

 Time (UTC) Status

-

2012/03/14 18:33:27 - new

2012/03/14 18:33:28 - submitting

2012/03/14 18:34:10 - backend_running

2012/03/14 18:34:10 - submitted

2012/03/14 18:34:14 - running

 splitter = SBSubmission (

) ,

 subjobs = 'Registry Slice: jobs(50).subjobs (3 objects)

 fqid | status | name | subjobs | application | backend | backend.actualCE | exitcode

 50.0 | running | myJob | | Executable | Local | bbr-ui.cr.cnaf.infn.it | None

 50.1 | failed | myJob | | Executable | Local | bbr-ui.cr.cnaf.infn.it | 1

 50.2 | running | myJob | | Executable | Local | bbr-ui.cr.cnaf.infn.it | None

' ,

● Backend = LCG()

23

Analysis software setup
● User prepares his software directory containing executable script

and all files needed for analysis or personal production purpose.
● At job run time on remote node the following environment variables

should be used by user executable:
● WN_INPUTFILES : points to the directory where input files are

downloaded.
– User executable should refer to such a directory for input file access

● WN_OUTPUTFILES : points to directory where user executable
should write its output files to be registered on grid.

● WN_INPUTLIST : points to a txt file in the $WN_INPUTFILES
directory which contains the input files absolute path list.

● The user executable script should comply these information to run
correctly.

Stage Out

● Every SuperB subjob will return via outputsandbox
● output_files.txt that contains the list of LFNs registered in the grid.
● Job log output files
● Whatever user need to be transferred back within 50MB of

occupancy
– Next command example will printout the output_files.txt belonging to

each subjobs.
● !zcat $j.outputdir/output_files.txt.gz

● If you wish to use the output files of one bulk job (eg:
personal production output) as input of another analysis bulk
job, you should create a 'dataset' which contains that job's
output files.

Stage Out

Stage out operations are the same independently by use case:

● Output sandbox can be used for smaller files (< 50 MB):
● j.outputsandbox = ['graphs.root']
● 'graphs' directory residing in relative path with respect the node job home dir

will be transferred to gangadir on User Interface

● GRID registration: every file your executable script put in
WN_OUTPUTFILES will be registered in GRID file catalog.

/grid/superbvo.org/analysis/<user_identity_from_ce
rtificate>/<date_idjob_tarballname_jname>/output/s
ubjobid_filename

● On CNAF filesystem:
● /storage/gpfs_superb/sb_analysis/
<user_identity_from_certificate>/<date_idjob_tar
ballname_jname>/ output /subjobid_filename

26

Monitoring
● Job registry: a list of all your jobs

● fqid: ganga job id

● status: current job status

● name: job name (j.name = 'myJob')

● subjobs: number of subjobs in a bulk submission

● application: what job runs

● backend: where job runs

● backend.actualCE: hostname of the local machine, or 'hostname of the site'
if backend is LCG

● exitcode: job exit status

In [5]:jobs
Out[5]:
Registry Slice: jobs (1 objects)

 fqid | status | name | subjobs | application | backend | backend.actualCE | exitcode

 84 | completed |HelloWorld | | Executable | Local | bbr-ui.cr.cnaf.infn.it | 0
 85 | failed | test | | SBApp | LCG | lpsc-cream-ce.in2p3.fr | 1
 86 | running | myJob | 3 | SBApp | Local | | None

27

SuperB Ganga plugin: documentation

● Ganga official documentation:
http://ganga.web.cern.ch/ganga/user/html/GangaIntroduction/

● Wiki: user guide
http://mailman.fe.infn.it/superbwiki/index.php/Distributed_Computing/Ganga_setup_for_SuperB

● Epydoc: technical documentation from docstrings
http://bbr-serv09.cr.cnaf.infn.it:8080/doc/ganga/

● SuperB plugin is integrated in Ganga's help.

Inside a session simply type help() at the prompt:
In [1]:help()

This is an interactive help based on standard pydoc help.

Type 'index' to see GPI help index.
Type 'python' to see standard python help screen.
Type 'interactive' to get online interactive help from an expert.
Type 'quit' to return to Ganga.

help>

http://ganga.web.cern.ch/ganga/user/html/GangaIntroduction/
http://mailman.fe.infn.it/superbwiki/index.php/Distributed_Computing/Ganga_setup_for_SuperB
http://bbr-serv09.cr.cnaf.infn.it:8080/doc/ganga/

28

Conclusions

● SuperB Ganga Plugin is under heavy development. User
feedback is essential to ensure Ganga has all functionality
required for distributed analysis.

● We are looking for beta testers: participants are strongly
encouraged to try using Ganga themselves, and to get in touch
if they run into problems or have suggestions for improvement.

● We are proposing to form a “Focused group” of users interested in
collaborating in Ganga SuperB framework testing

● Send e-mail to SuperB ganga list:

superb-ganga@lists.infn.it

29

Thanks all and backup slides

30

How to start Ganga at CNAF

● Obtain a certificate and setup your home on UI:
http://mailman.fe.infn.it/superbwiki/index.php/CNAF_services/How_to_access_Grid_resources

● Add to your ~/.bashrc file the following line:
● alias ganga="${VO_SUPERBVO_ORG_SW_DIR}/ganga/bin/ganga_wrap.sh"

● Then start ganga:
user@bbr-ui ~ $ ganga

*** Welcome to Ganga ***
Version: Ganga-5-7-7
Documentation and support: http://cern.ch/ganga
Type help() or help('index') for online help.

This is free software (GPL), and you are welcome to redistribute it
under certain conditions; type license() for details.

In [1]:

● Ganga CLI: Ipython shell interface (http://ipython.org/)

http://mailman.fe.infn.it/superbwiki/index.php/CNAF_services/How_to_access_Grid_resources

31

Ganga Scripting

#!/usr/bin/env ganga
#-*-python-*-
import time
j = Job()
j.backend = LCG()
j.submit()
while not j.status in [‘completed’,’failed’]:
 print(‘job still running’)
 time.sleep(30)

./myjob.exec

ganga ./myjob.exec

In [1]:execfile(“myjob.exec”)

GPI & Scripting

You may use all features of Python programming
language to write complex scripts loops, ifs,
variables files, math, network modules, ...

32

First Ganga Job
In [1]: !vi myscript.sh

In [2]: !chmod +x myscript.sh

In [2]: j = Job()

In [3]: j.application = Executable()

In [4]: j.application.exe = File(‘myscript.sh’)

In [5]: j.application.args = [‘ganga’]

In [6]: j.backend = Local()

In [7]: j.submit()

In [8]: jobs

In [9]: j.peek()

In [10]:cat $j.outputdir/stdout

#!/bin/sh
echo "hello! ${1}”
echo $HOSTNAME
cat /proc/cpuinfo | grep 'model name’
cat /proc/meminfo | grep 'MemTotal'

./myscript.sh ganga

33

First Ganga Job on the GRID

In [11]:j = j.copy()

In [12]:j.backend = LCG()

In [13]:j.application.args = [‘grid’]

In [14]:j.submit()

job registry: a list of all your jobs

In [5]:jobs

Out[5]:

Registry Slice: jobs (1 objects)

 fqid | status | name | subjobs | application | backend | backend.actualCE | exitcode

 50 | running | myJob | 3 | SBApp | Local | | None

● 84 | completed |HelloWorld | | Executable | Local | bbr-ui.cr.cnaf.infn.it | 0

●

34

High level scenario

Ganga

35

Input and output sandbox

● You may specify additional files which will be copied to the
worker node as the inputsandbox.

● The outputsandbox specifies which files should be copied
from the worker node to the submitter machine (UI)

● This mechanism works for small files (less than 50 MB).

j = Job()

j.application.exe=File('spy')

j.inputsandbox = [File('~/extra_file')]

j.outputsandbox = ['b.dat','a*.txt']

j.submit()

36

Ganga Text Prompt
metterei la 10 di kuba

● Ganga is based on python and has an enhanced python prompt
(Ipython):

● python programming/scripting
– Var = 5
– print var*10

● easy access to the shell commands

– !less ~/.gangarc # personal config file
– !pwd

● history <arrow up>
● TAB completion, it works on keywords, variables, objects, try:

– va<TAB>
● many more features

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36

