R&D in Bologna - Update

A. Montanari, <u>N. Tosi</u> for Bologna IFR group

5th SuperB collaboration Meeting Pisa, 20 September 2012

Part 1: Prototype tests

Light collection measurements

Assembly different IFR bar prototypes and study the effect on muon response of:

- WLS fiber glueing
- WLS fiber aluminizing
- Scintillator wrapping
- bar length

CAVEAT:

- the absolute figures depend on the type of SiPM used and on the quality of its optical coupling to the fiber
- relatives figures are more relevant

Custom readout and control system

• Versatile system for 8 channels:

SiPM used for tests

Hamamatsu 1x1 mm² 50 µm pixel

SiPM

Caveat: not optimized optical coupling

Light collection in short scintillator bar

- Fermilab scintillator bar:
 - transverse size: 4.5x1.0 cm²
 - length: 25 cm
 - one straight groove on top
- WLS: Kuraray 1 mm diameter
 - With and w/o Aluminization

• Aluminum or black wrapping of scintillator

Example: WLS glued + not alumized

Aluminization and scintillator wrapping

- No difference found between
 - Aluminized Mylar wrapping
 - Black (non-reflective?) paper
- But tested fiber had a small piece of aluminum glued at the far end...
 - Effect similar to proper fiber aluminization
 - Was put there to protect fiber end
 - If removed may prove even Al wrapping has similar effect, only smaller due to air gap (direct comparison not yet done)

New!!

Summary of light collection tests

• Fired pixels per MIP:

New!!

Fiber ends	Scintillator Wrapping	Not Glued Fiber	Glued Fiber
against wrapping	Black	-	38 ± 3
against wrapping	Al	37 ± 3	_
glued Aluminium	AI	-	58 ± 4
aluminized	Al	46 ± 3	-

Many combinations are missing, some very interesting such as a direct glued vs. not glued fiber, but see next...

Light collection in long bar

• 2 m bar, WLS Kuraray Y11, T~25° C

Light collection vs distance

Prototype IFR bar, 200 cm, WLS Kuraray Y11-300, T ~ 25°C

Pisa, 20 September 2012

A. Montanari

Light from 2 fibers on same scintillator

New!!

- Measure with 2 Hamamatsu 1x1mm², nearly identical efficiency
- Not Glued, not aluminized fibers, but Al wrapped scintillator (matches conditions of single fiber measure)
- Acquired individual spectra, then summed average values

Total =
$$27 \gamma + 28 \gamma = 55 \gamma = +49\%$$
 wrt 1 fiber (37)

Conclusion

- Glueing the fiber improves light collection by about 50% (2m long bar)
- Aluminizing or adding some other form of reflector improves light collection in short fiber, additional measurements needed to determine how much
- Attenuation is an issue on long bar
 - more relevant in the blue region of light spectrum
 - Hamamatsu very sensitive to this effect
 - But measure used a single fiber

Part 2: Simulation

Light collection simulation

- setup a detailed simulation of light production, Rovelli propagation and detection in a prototype of a scintillator bar (FLUKA)
- cross check expected results from simulation with data collected from a real prototype: tune simulation free/unknown parameters
- use simulation setup to study different geometries and optical couplings
- still preliminary results..

Tiziano

Prototype setup

- use FLUKA (version 2011.2.13)
- simulation of bar prototype used to test MIP response (25x4.5x1 cm³, Al wrapped)

(figures in cm)

Effect of glue and aluminization

• Simulate same geometry as real prototype:

- Good agreement with data (SiPM xtalk not simulated)
- Effect of glueing is underestimated...

Long scintillator bar

• 2 m bar, WLS Kuraray Y11 NOT GLUED

Effect of SiPM plastic package

SiPM perfectly aligned

Air/Plastic

-SiPM

Photon beam profile

- More photons from the center of the fiber
 - Less sensitivity to SiPM misalignment

Z 🖡

Air

300 um

Light from 1 fiber in 5 and 10 cm wide scintillator

W=5 cm

W=10 cm

 - 43% of collected light at fiber output in 10 cm wide bar

Light from 2 fibers on same scintillator

4.5 cm

Total = 80 γ + 79 γ = 159 γ = +49% wrt 1 fiber

Light from 2 fibers on same scintillator

Total = 87 γ + 93 γ = 180 γ = +68% wrt 1 fiber

Pisa, 20 September 2012

A. Montanari

Conclusion

• First version of simulation was setup

- First tuning done by comparison with real prototype
 - data reproduced at 10-20% level
 - SiPM cross-talk not simulated
 - behavior well reproduced.

Part 3: Neutron irradiation test

Setup at Gelina facility

- Low energy neutrons (peak at ~40 meV)
- Total fluence $\sim 2 \times 10^{10} \text{ n/cm}^2$
- Measure dark rates and charge spectra

A.M.,

N.Tosi

Dark rate vs neutron fluence

Threshold on integrated signal (>1.5 pixel)

• Hamamatsu 1x1 mm2, 50 um pixel

Charge spectra: example 2

• FBK 2012 1x1 mm2, 50 um pixel

Charge spectra: example 3

• FBK 2008 1x1 mm2, 50 um pixel

Scintillator irradiation

- 2 prototype bars (WLS w/ and w/o glue)
- Irradiated with $\sim 2 \times 10^{10} \text{ n/cm}^2$ ($\sim 6 \times 10^8 \text{ 1Mev eq.}$)
- NO measurable effect (preliminary)

Pisa, 20 September 2012

A. Montanari

Conclusion

- Very preliminary results
- Single photon capability (calibration) lost after few 10⁹ n/cm²
- Scintillator, fiber and glue not affected

Backup slides

Prototype setup

Prototype setup

Integrated charge measurements

Dark Noise rate measurements

arbitrary units

Threshold [pixels]

T~23°C

Correlated Noise effect

- Use Toy MC to generate 53 detected photons with Poisson statistics
- Apply 20% crosstalk + afterpulse

 Measure: (2993-2681)/5=62
fired pixels !!

SiPM from Bologna

FBK 1x1 mm² old 2008 sample, model C, ..not state of the art.. 50 μm pixel

Caveat: not optimized optical coupling

Emission/Absorption spectra

Scintillator: EJ 200

WLS fiber: Kuraray Y11

A. Montanari

Photons arrival times

If scintillator and WLS fiber decay times are NOT simulated:

Photons arrival times

- Adding decay times simulation:
 - scintillator: $\tau = 2$ ns
 - WLS fiber: $\tau = 7.5$ ns

Photons detected by SiPM

- About 100 detected photons/MIP
 - simulation not yet tuned

