

F.Forti, INFN and University, Pisa

- The design of the detector is almost completely defined
- Updates to budget and schedule will be discussed at this meeting.
- The TDR is 80-90% complete and should be published in the next month or so.

....but...

- Need a clear and realistic schedule for the machine construction and the corresponding funding
- Eagerly waiting for ministerial review to happen in october.

F.Forti - Detector Status

System	Baseline	Issues (technical OR manpower; R&D)	
MDI	Initial IR designed	Magnetic elements and radiation masks. Design of tungsten Cryostats radius Background simulations: global map. detector occupancy	shields.
SVT	6-laver silicon	Technology for Layer 0: striplets, with pixels as upgrade path).
		Thin pixels R&D. Readout chip for strips. Mechanical design	n.
DCH	Stereo-axial	Dimensions (inner radius, length) defined. Mechanical struct	ture.
	He-based	Cluster counting option as upgrade	
EMC	Barrel: CsI(TI)	Electronics and trigger. Mechanical structure	
	Forw: LYSO	Forward EMC technology: hybrid LYSO+CsI(TI) with Pure R&D. Backward EMC: cost/benefit analysis	Csl as
PID	DIRC w/	FBLOCK design completed. Photon detection defined. Mech	nanical
	FBLOCK	Forward PID: cost/benefit analysis Prove TOF technology	
IFR	Scintillator+ fibers	9 layers. SiPM location defined. Extra 10cm iron. Mechanical of extra shield.	design
ETD	Synchronous const. latency	Fast link rad hardness. LI Trigger (jitter and rate). ROM desi Link to computing for HLT.	igned.
4		F.Forti - Detector Status September	19,2012

CABIBBOLAB TDR process and timeline

- The Technical Design Report is an essential step to get funding and get the detector built.
- Funding and schedule
 - The TDR will contain an updated budget and a schedule for construction.
 - It will not be incorporate funding agencies intentions and committments into the TDR:
 - ➤ A separate financial document to detail the agencies contributions will be published later

TDR Timeline

- June-July 2011:
 - setup SVN repository + initial outline
- September 2011
 - Detailed outline with page count + editorial responsibilities
 - Tentative institutional matrix of responsibilities and money allocation

• December 2011 \rightarrow March 2012

- First (in)complete draft,
- Decision about what is in and what is out
- Updated budget and schedule for construction
- February 2012 \rightarrow June 2012 \rightarrow September 2012
 - Complete draft into final editing
 - > Final readers identified
- ▶ July 2012 → September 2012
 - Updated budget and schedule for construction

September → October 2012: Publish

Contents

1.1The Physics Motivation1.2The SuperB Project Elements1.3The Detector Technical Design Report2Accelerator Overview3Detector Overview3.1Physics Performance3.2Challenges on Detector Design3.3Open Issues3.4Detector R&D4Physics with SuperB4.1Introduction4.2.1Rare B decays4.2.2Rare D decays4.2.3CKM matrix and unitarity triangle2.4.2.3CF violation in B decays4.2.4CP violation in B decays4.2.5CP violation in D decays2.4.6Other symmetry tests4.2.7Charm mixing2.4.8B physics at the $\Upsilon(5S)$ 4.3.1Lepton flavor violation in τ decay4.3.2CP violation in τ decay4.3.3Measurement of the τ g -2 and EDM form factors2.4Speetrascosopy in SuperB4.5Exotic Speetroscopy in SuperB4.6Direct searches3.7Executive Summary3.6Direct searches3.7Executive Summary3.6Direct searches3.7Executive Summary3.8Shield System3.9Shield System3.9Shield System3.9Shield System3.9Shield System3.9Shield System3.9Shield System3.9Shield System3.9Shield System	1	Intr	oduction	1
1.2The SuperB Project Elements1.3The Detector Technical Design Report2Accelerator Overview3Detector Overview3.1Physics Performance3.2Challenges on Detector Design13.3Open Issues13.4Detector R&D114Physics with SuperB114.1Introduction1.2.2Rare B decays4.2.1Rare B decays4.2.2Rare D decays4.2.3CKM matrix and unitarity triangle2.4.2.4CP violation in B decays2.4.2.5CP violation in D decays2.4.2.6Other symmetry tests2.2.8B physics at the $T(5S)$ 2.4.2Rar biologian π decay2.4.3.1Lepton flavor violation in τ decay2.4.3.3Measurement of the τ g -2 and EDM form factors2.4.4SuperB Neutral Current Electroweak Physics Programme2.4.5Exotic Spectroscopy in SuperB2.4.6Direct searches3.7Executive Summary3S.15Machine Detector Interface and Backgrounds3S.3.15.1OverviewMachine Detector Interface and Backgrounds3S.3.15.3Radiative Bhabha3.5.3Shield System3.5.3Shield System3.5.3Shield System3.5.3Shield System3.5.3Shield System3.5.33.5.3 <th></th> <th>1.1</th> <th>The Physics Motivation</th> <th>1</th>		1.1	The Physics Motivation	1
1.3The Detector Technical Design Report2Accelerator Overview3Detector Overview3.1Physics Performance3.2Challenges on Detector Design3.3Open Issues3.4Detector R&D4Physics with SuperB4.1Introduction4.2.1Rare B decays4.2.2Rare D decays4.2.3CKM matrix and unitarity triangle2.4.2.4CP violation in D decays4.2.5CP violation in D decays4.2.6Other symmetry tests4.2.7Charm mixing2.4.2.8B physics at the $\Upsilon(5S)$ 4.3Measurement of the τ g -2 and EDM form factors4.3.3Measurement of the τ g -2 and EDM form factors4.4SuperB Neutral Current Electroweak Physics Programme2.4Sector Spectroscopy in SuperB4.5Exotic Spectroscopy in SuperB4.6Direct searches3Sali Leytor Interface and Backgrounds5Machine Detector Interface and Backgrounds5.1Overview5.2Backgrounds sources5.3Radiative Bhabha5.3Radiative Bhabha5.3Radiative Bhabha5.3Shield System5Carbon Cols5Detector Interface and Backgrounds5Salield System5Carbon Cols5Carbon Cols5Salield System5Carbon Cols5Salield System5		1.2	The SuperB Project Elements	1
2Accelerator Overview3Detector Overview3.1Physics Performance3.2Challenges on Detector Design3.3Open Issues3.4Detector R&D4Physics with SuperB4.1Introduction4.2B and D decays4.2.1Rare B decays4.2.2Rare D decays4.2.3CKM matrix and unitarity triangle2.4.2.4CP violation in B decays4.2.5CP violation in D decays4.2.6Other symmetry tests4.2.7Charr mixing24.2.84.2.8B physics at the $T(5S)$ 24.34.3Measurement of the τg -2 and EDM form factors4.4SuperB4.5Exotic Spectroscopy in SuperB4.6Direct searches4.7Executive Summary35.15Machine Detector Interface and Backgrounds5.1Simulation tools5.3.3Shield System5.3.3Shield System5.3.3Shield System		1.3	The Detector Technical Design Report	2
3Detector Overview3.1Physics Performance3.2Challenges on Detector Design13.3Open Issues13.4Detector R&D4Physics with SuperB4.1Introduction4.2B and D decays4.2.1Rare B decays4.2.2Rare D decays4.2.3CKM matrix and unitarity triangle4.2.4CP violation in B decays4.2.5CP violation in D decays4.2.6Other symmetry tests4.2.7Charm mixing4.2.8B physics at the $\Upsilon(5S)$ 4.3I bepton flavor violation in τ decay4.3.1Lepton flavor violation in τ decay4.3.2CP violation in π decay4.3.3Measurement of the τ g -2 and EDM form factors4.4SuperB4.5Exotic Spectroscopy in SuperB4.6Direct searches4.7Exotic Spectroscopy in SuperB4.6Direct searches4.7Exotic Spectroscopy in SuperB4.8SuperB Neutral Current Electroweak Physics Programme4.5Exotic Spectroscopy in SuperB4.6Direct searches3.7Executive Summary3S.15.1Overview5.2Backgrounds sources.5.3Shield System5.4Start behanha5.3Shield System5.4System5.4Overview5.5A theban holes5.3Shield System<	2	Acc	elerator Overview	7
3.1Physics Performance3.2Challenges on Detector Design3.3Open Issues3.4Detector R&D4Physics with SuperB4.1Introduction4.2B and D decays4.2.1Rare B decays4.2.2Rare D decays4.2.2Rare D decays4.2.3CKM matrix and unitarity triangle2.4.4CP violation in B decays4.2.5CP violation in D decays4.2.6Other symmetry tests2.7Charm mixing2.8B physics at the $\Upsilon(5S)$ 4.3T physics at SuperB4.3.1Lepton flavor violation in τ decay4.3.2CP violation in τ decay4.3.3Measurement of the $\tau g-2$ and EDM form factors4.4SuperB Neutral Current Electroweak Physics Programme4.5Exotic Spectroscopy in SuperB4.6Direct searches4.7Executive Summary5Machine Detector Interface and Backgrounds5.1Overview5.2Backgrounds sources.5.3Radiative Bhabha5.3.3Shield System5.4Nieuki System5.4Nieuki System5Shield System	3	Det	ector Overview	9
3.2Challenges on Detector Design13.3Open Issues13.4Detector R&D14Physics with SuperB14.1Introduction14.2B and D decays14.2.1Rare B decays14.2.2Rare D decays24.2.3CKM matrix and unitarity triangle24.2.4CP violation in B decays24.2.5CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8B physics at the $\Upsilon(5S)$ 24.3Lepton flavor violation in τ decay24.3.1Lepton flavor violation in τ decay24.3.2CP violation in τ decay24.3.3Measurement of the τ g-2 and EDM form factors24.4SuperB Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in SuperB24.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo, E.Paoloni, - 1 page35.3Radiative Bhabha335.3.4Shield System3		3.1	Physics Performance	9
3.3Open Issues13.4Detector R&D14Physics with SuperB14.1Introduction14.2B and D decays14.2.1Rare B decays14.2.2Rare D decays24.2.3CKM matrix and unitarity triangle24.2.4CP violation in B decays24.2.5CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8B physics at the $T(5S)$ 24.3T physics at SuperB24.3.1Lepton flavor violation in τ decay24.3.2CP violation in τ decay24.3.3Measurement of the τ g-2 and EDM form factors24.3Measurement of the τ g-2 and EDM form factors24.4SuperB Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in SuperB24.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo, E.Paoloni, - 1 page35.3Radiative Bhabha335.3.1Simulation tools335.3.2Losses at the beam-pipe335.3.3Shield System33		3.2	Challenges on Detector Design	12
3.4Detector R&D14Physics with SuperB14.1Introduction14.2B and D decays14.2.1Rare B decays14.2.2Rare D decays14.2.3CKM matrix and unitarity triangle24.2.4CP violation in B decays24.2.5CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8B physics at the $\Upsilon(5S)$ 24.3T physics at SuperB24.3.1Lepton flavor violation in τ decay24.3.2CP violation in τ decay24.3.3Measurement of the τ g-2 and EDM form factors24.3Measurement of the τ g-2 and EDM form factors24.4SuperB Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in SuperB24.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo, E.Paoloni, - 1 page35.3Radiative Bhabha335.3.2Losses at the beam-pipe335.3.3Shield System33		3.3	Open Issues	14
4 Physics with SuperB 1 4.1 Introduction 1 4.2 B and D decays 1 4.2.1 Rare B decays 1 4.2.2 Rare D decays 1 4.2.3 CKM matrix and unitarity triangle 2 4.2.4 CP violation in B decays 2 4.2.5 CP violation in D decays 2 4.2.6 Other symmetry tests 2 4.2.7 Charm mixing 2 4.2.8 B physics at the 7(55) 2 4.3 $ au$ physics at SuperB 2 4.3.1 Lepton flavor violation in $ au$ decay 2 4.3.2 CP violation in $ au$ decay 2 4.3.3 Measurement of the $ au$ g-2 and EDM form factors 2 4.3.3 Measurement of the $ au$ g-2 and EDM form factors 2 4.5 Exotic Spectroscopy in SuperB 2 4.6 Direct searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo, E.Paoloni, -		3.4	Detector R&D	14
4.1Introduction14.2B and D decays14.2.1Rare B decays14.2.2Rare D decays24.2.3CKM matrix and unitarity triangle24.2.4CP violation in B decays24.2.5CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8B physics at the $T(5S)$ 24.3T physics at SuperB24.3.1Lepton flavor violation in τ decay24.3.2CP violation in τ decay24.3.3Measurement of the τ g-2 and EDM form factors24.3SuperB Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in SuperB24.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo E.Paoloni, - 1 page.35.3Radiative Bhabha335.3.1Simulation tools335.3.2Losses at the beam-pipe35.3.3Shield System3	4	Phy	sics with SuperB	19
4.2B and D decays14.2.1Rare B decays14.2.2Rare D decays24.2.3CKM matrix and unitarity triangle24.2.4CP violation in B decays24.2.5CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8B physics at the $\Upsilon(5S)$ 24.3 τ physics at SuperB24.3.1Lepton flavor violation in τ decay24.3.2CP violation in τ decay24.3.3Measurement of the τ g-2 and EDM form factors24.3Measurement of the τ g-2 and EDM form factors24.5Exotic Spectroscopy in SuperB34.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo E.Paoloni, - 1 page35.3Radiative Bhabha335.3.1Simulation tools335.3.2Losses at the beam-pipe335.3.3Shield System33		4.1	Introduction	19
4.2.1Rare B decays14.2.2Rare D decays24.2.3CKM matrix and unitarity triangle24.2.4CP violation in B decays24.2.5CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8B physics at the $\Upsilon(5S)$ 24.3T physics at SuperB24.3.1Lepton flavor violation in τ decay24.3.2CP violation in τ decay24.3.3Measurement of the τ g-2 and EDM form factors24.4SuperB Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in SuperB34.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo E.Paoloni, - 1 page35.3Radiative Bhabha335.3.1Simulation tools335.3.2Losses at the beam-pipe335.3.3Shield System33		4.2	B and D decays \ldots	19
4.2.2Rare D decays24.2.3CKM matrix and unitarity triangle24.2.4 CP violation in B decays24.2.5 CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8B physics at the $\Upsilon(5S)$ 24.3 τ physics at Super B24.3.1Lepton flavor violation in τ decay24.3.2 CP violation in τ decay24.3.3Measurement of the τg -2 and EDM form factors24.4Super B Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in Super B24.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo E.Paoloni, - 1 page35.3Radiative Bhabha35.3.1Simulation tools35.3.3Shield System3			4.2.1 Rare <i>B</i> decays	19
4.2.3CKM matrix and unitarity triangle24.2.4 CP violation in B decays24.2.5 CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8 B physics at the $\Upsilon(5S)$ 24.3 τ physics at Super B 24.3.1Lepton flavor violation in τ decay24.3.2 CP violation in τ decay24.3.3Measurement of the τ g -2 and EDM form factors24.4Super B Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in Super B 24.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo E.Paoloni, - 1 page35.3Radiative Bhabha335.3.1Simulation tools335.3.2Losses at the beam-pipe35.3.3Shield System3			4.2.2 Rare D decays	21
4.2.4 CP violation in B decays24.2.5 CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8 B physics at the $\Upsilon(5S)$ 24.3 τ physics at Super B 24.3.1Lepton flavor violation in τ decay24.3.2 CP violation in τ decay24.3.3Measurement of the τ $g-2$ and EDM form factors24.4Super B Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in Super B 24.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo E.Paoloni, - 1 page35.3Radiative Bhabha335.3.1Simulation tools335.3.2Losses at the beam-pipe35.3.3Shield System3			4.2.3 CKM matrix and unitarity triangle	22
4.2.5 CP violation in D decays24.2.6Other symmetry tests24.2.7Charm mixing24.2.8 B physics at the $T(5S)$ 24.3 τ physics at Super B 24.3.1Lepton flavor violation in τ decay24.3.2 CP violation in τ decay24.3.3Measurement of the τ g -2 and EDM form factors24.3Super B Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in Super B 24.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo E.Paoloni, - 1 page35.3Radiative Bhabha335.3.1Simulation tools335.3.2Losses at the beam-pipe335.3.3Shield System33			4.2.4 CP violation in B decays	23
4.2.6Other symmetry tests24.2.7Charm mixing24.2.8B physics at the $\Upsilon(5S)$ 24.3 τ physics at SuperB24.3.1Lepton flavor violation in τ decay24.3.2 CP violation in τ decay24.3.3Measurement of the τ $g-2$ and EDM form factors24.4SuperB Neutral Current Electroweak Physics Programme24.5Exotic Spectroscopy in SuperB24.6Direct searches34.7Executive Summary35Machine Detector Interface and Backgrounds35.1OverviewM.Sullivan, M. Boscolo E.Paoloni, - 1 page35.3Radiative Bhabha335.3.1Simulation tools335.3.2Losses at the beam-pipe35.3.3Shield System3			4.2.5 CP violation in D decays	23
4.2.7 Charm mixing 2 4.2.8 B physics at the $\Upsilon(5S)$ 2 4.3 τ physics at SuperB 2 4.3.1 Lepton flavor violation in τ decay 2 4.3.2 CP violation in τ decay 2 4.3.3 Measurement of the τ g -2 and EDM form factors 2 4.3.3 Measurement of the τ g -2 and EDM form factors 2 4.4 SuperB Neutral Current Electroweak Physics Programme 2 4.5 Exotic Spectroscopy in SuperB 2 4.6 Direct searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E. Paoloni, - 1 page 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages 3 5.3 Radiative Bhabha 3 3 3 3 5.3.1 Simulation tools 3 3 3 3 5.3.3 Shield System 3 3 3			4.2.6 Other symmetry tests	24
4.2.8 B physics at the $T(5S)$ 2 4.3 τ physics at SuperB 2 4.3.1 Lepton flavor violation in τ decay 2 4.3.1 Lepton violation in τ decay 2 4.3.2 CP violation in τ decay 2 4.3.3 Measurement of the τ g-2 and EDM form factors 2 4.3.3 Measurement of the τ g-2 and EDM form factors 2 4.4 SuperB Neutral Current Electroweak Physics Programme 2 4.5 Exotic Spectroscopy in SuperB 2 4.6 Direct searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E. Paoloni, - 1 page 3 5.2 Backgrounds sources. M.Sullivan, M. Boscolo, E. Paoloni, - 2 pages 3 5.3.1 Simulation tools 3 3 3 5.3.2 Losses at the beam-pipe 3 3 3 5.3.3 Shield System 3 3			4.2.7 Charm mixing	24
4.3 τ physics at Super B 2 4.3.1 Lepton flavor violation in τ decay 2 4.3.2 CP violation in τ decay 2 4.3.3 Measurement of the τ g-2 and EDM form factors 2 4.3.3 Measurement of the τ g-2 and EDM form factors 2 4.4 Super B Neutral Current Electroweak Physics Programme 2 4.5 Exotic Spectroscopy in Super B 2 4.6 Direct searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E.Paoloni, - 1 page 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages 3 5.3 Radiative Bhabha 3 3 3 3 5.3.1 Simulation tools 3 3 3 3 5.3.3 Shield System 3 3 3			4.2.8 B physics at the $\Upsilon(5S)$	25
4.3.1 Lepton flavor violation in τ decay 2 4.3.2 CP violation in τ decay 2 4.3.3 Measurement of the τ g –2 and EDM form factors 2 4.3.3 Measurement of the τ g –2 and EDM form factors 2 4.4 SuperB Neutral Current Electroweak Physics Programme 2 4.5 Exotic Spectroscopy in SuperB 2 4.6 Direct searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E.Paoloni, - 1 page 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages 3 5.3 Radiative Bhabha 3 3 3 3 5.3.1 Simulation tools 3 3 3 3 5.3.3 Shield System 3 3 3		4.3	τ physics at SuperB	26
4.3.2 CP violation in τ decay 2 4.3.3 Measurement of the τ g-2 and EDM form factors 2 4.4 SuperB Neutral Current Electroweak Physics Programme 2 4.5 Exotic Spectroscopy in SuperB 2 4.6 Direct searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E.Paoloni, - 1 page 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages 3 5.3 Radiative Bhabha 3 3 3 3 5.3.1 Simulation tools 3 3 3 3 5.3.3 Shield System 3 3 3			4.3.1 Lepton flavor violation in τ decay	26
4.3.3 Measurement of the τ g-2 and EDM form factors 2 4.4 SuperB Neutral Current Electroweak Physics Programme 2 4.5 Exotic Spectroscopy in SuperB 2 4.6 Direct searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E.Paoloni, - 1 page 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages 3 5.3 Radiative Bhabha 3 3 3 5.3.1 Simulation tools 3 3 3 5.3.3 Shield System 3 3 3			4.3.2 <i>CP</i> violation in τ decay	27
4.4 SuperB Neutral Current Electroweak Physics Programme 2 4.5 Exotic Spectroscopy in SuperB 2 4.6 Direct searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E.Paoloni, - 1 page 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages 3 5.3.1 Simulation tools 3 3 5.3.2 Losses at the beam-pipe 3 3 5.3.3 Shield System 3 3			4.3.3 Measurement of the τ g-2 and EDM form factors	27
4.5 Exotic Spectroscopy in SuperB 2 4.6 Direct searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E.Paoloni, - 1 page 3 5.2 Backgrounds sources. M.Sullivan, M. Boscolo, E.Paoloni, - 2 pages 3 5.3 Radiative Bhabha 3 3 3 5.3.1 Simulation tools 3 3 5.3.2 Losses at the beam-pipe 3 3 5.3.3 Shield System 3 3		4.4	SuperB Neutral Current Electroweak Physics Programme	28
4.0 Differ searches 3 4.7 Executive Summary 3 5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E.Paoloni, - 1 page. 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages 3 5.3 Radiative Bhabha 3 3 5.3.1 Simulation tools 3 3 5.3.2 Losses at the beam-pipe 3 5.3.3 Shield System		4.5	Exotic Spectroscopy in SuperB	29
5 Machine Detector Interface and Backgrounds 3 5.1 Overview M.Sullivan, M. Boscolo E.Paoloni, - 1 page. 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages 3 5.3 Radiative Bhabha 3 3 5.3.1 Simulation tools 3 3 5.3.2 Losses at the beam-pipe 3 3 5.3.3 Shield System 3 3		4.0	Executive Summary	31
5 Mixeline Detector interace and backgrounds 5 5.1 Overview M.Sullivan, M. Boscolo E.Paoloni, - 1 page. 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages. 3 5.3 Radiative Bhabha		Max	abias Detector Interface and Rechargements	27
5.1 Overview A.Sullivan, M. Boscolo E.I aboni, - 1 page 3 5.2 Backgrounds sources. M.Sullivan, M.Boscolo, E.Paoloni, - 2 pages 3 5.3 Radiative Bhabha 3 3 5.3.1 Simulation tools 3 5.3.2 Losses at the beam-pipe 3 5.3.3 Shield System 3	9	5 1	Overview M Sullivan M Bessele F Peoloni 1 page	37
5.3 Radiative Bhabha 3 5.3.1 Simulation tools 3 5.3.2 Losses at the beam-pipe 3 5.3.3 Shield System 3		5.2	Backgrounds sources M.Sullivan, M. Boscolo E. Paoloni, - 1 page	37 37
5.3.1 Simulation tools 3 5.3.2 Losses at the beam-pipe 3 5.3.3 Shield System 3		5.3	Badiativa Bhabha	37
5.3.2 Losses at the beam-pipe 3 5.3.3 Shield System 3		0.0	5.3.1 Simulation tools	37
5.3.3 Shield System			5.3.2 Losses at the beam-pipe	38
			5.3.3 Shield System	39
5.4 Pairs Production C.Rimbault - 2 pages 4		5.4	Pairs Production C.Rimbault - 2 pages	40

	5.5	Touse	heck bacgkround.	M.Boscolo - 2 pages	. 40
	5.6	Beam	gas background.	M.Boscolo - 2 pages	. 40
	5.7	Synch	rotron radiation background.	M.Sullivan - 2 pages	. 40
	5.8	SVT b	ackground overview		. 40
	5.9	DCH	background overview R.	Cenci D.Lindemann - 2 pages	. 42
	5.10	FTO	F background overview	L.Burmistrov - 2 pages	42
	5.11	FDIR	C background overview		42
		5.11.1	Shielding the FDIRC		. 43
		5.11.2	Background rates in the FDIRC .		. 43
		5.11.3	Integrated charges and doses		. 43
	5.12	EMC	background overview.	S.Germani - 2 pages	. 43
	5.13	IFR b	ackground overview	V.Santoro - 2 pages	. 45
	5.14	ETD	background overview	R.Cenci - 2 pages	. 45
	5.15	SVT	radiation monitor.	A.Di Ciaccio- 3 pages	45
	5.16	Quick	demounting. M.Sullivar	n, F.Bosi, E.Paoloni - 4 pages	. 45
	c		Tradica		40
0	6.1	on ver	iowr C Bi	12 pages	49
	0.1	611	SVT and Lawer0	220 - 12 pages	. 49
		6.1.2	SVT Boquiroments		. 49 51
		0.1.2	6.1.2.1 Resolution		51
			6.1.2.2 Acceptance		51
			6123 Efficiency		53
			6124 Background & Badiation T	olerance	53
			6.1.2.5 Reliability		. 54
		6.1.3	Baseline Detector Concept		. 54
			6.1.3.1 Technology		. 54
			6.1.3.2 Lavout		. 54
			6.1.3.3 Electronic Readout		. 56
			6.1.3.4 Module design and Mechan	iical Support	. 58
		6.1.4	Layer0 Pixel Upgrade		. 59
			6.1.4.1 Motivations		. 59
			6.1.4.2 Technology Options for Lag	yer0 pixel upgrade	. 60
			6.1.4.3 Pixel Module & Material E	Budget	. 62
		6.1.5	R&D Main Activities		. 63
	6.2	Backg	rounds R.0	Cenci - 4 pages	. 63
		6.2.1	Pair production		. 64
		6.2.2	Radiative Bhabha		. 64
		6.2.3	Touschek		. 64
		6.2.4	Beam Gas		. 64
		6.2.5	Other sources		. 64
	6.3	Detect	or Performance Studies	N.Neri - 6 pages	. 64
		6.3.1	Introduction		. 64
		6.3.2	The SVT layout		. 64
		6.3.3	Impact of Layer0 on detector perform	mance	. 65
		6.3.4	Tracking performance		. 68
		6.3.5	Impact of machine background on the	acking performance	. 68

 \mathbf{v}

<i>с</i> л	0.0.0		2 0
6.4	Silicon	L. Bosisio - 8 pages	2
	0.4.1 C 4 9	Requirements	2
	6.4.2	Sensor design and technology	3
	6.4.3	Water layout and quantities	6
	6.4.4	Prototyping and tests	6
	6.4.5	z-side strip connection options	6
6.5	Fanou	t Circuits L.Vitale - M.Prest2+2 pages	7
	6.5.1	Fanouts for layer0	7
		6.5.1.1 Requirements	7
		6.5.1.2 Technology	7
		6.5.1.3 Design	7
		6.5.1.4 Prototyping and tests	7
	6.5.2	Fanouts for outer layers	7
		6.5.2.1 Requirements	7
		6.5.2.2 Material and production technique	8
		6.5.2.3 Design	8
		6.5.2.4 Tests and prototyping	8
6.6	Electro	onics Readout 28 pages	9
	6.6.1	Readout chips V.Re - 10	9
		6.6.1.1 Electronic Readout for Strip and Striplet Detectors	9
	6.6.2	Readout chips requirements	0
	6.6.3	Readout Chip Implementation	3
	6.6.4	R&D for strip readout chips	3
	6.6.5	Hybrid Design M.Citterio - 10	5
	6.6.6	Data TransmissionM.Citterio - 10	5
	6.6.7	Power Supply - 2	5
6.7	Mecha	nical Support and Assembly S.Bettarini/F.Bosi - 14 pages 8	5
	6.7.1	I.R. Constraint	5
	6.7.2	Module Assembly	7
	6.7.3	Detector Assembly and Installation	8
		6.7.3.1 SVT Half Detector Assembly	8
		6.7.3.2 Mount L0 on the Be-pipe and L 1-5 on the W Shielding 8	8
		6.7.3.3 Installation of Complete Assembly into the SuperB Detector 8	9
		6.7.3.4 Quick Demounting	9
	6.7.4	Detector Placement and Survey	1
		6.7.4.1 Placement accuracy 9	1
		6.7.4.2 Survey with tracks	1
	6.7.5	Detector Monitoring	1
		6.7.5.1 Position Monitoring System	1
		6.7.5.2 Radiation Monitoring	1
	6.7.6	R&D Program	1
		6.7.6.1 Cables	1

				-
		6.7.6.5	Cones and space frame	
		6.7.6.6	Full-scale model of IR	
6.8	Layer() Upgrade	e Options G.Rizzo/L.Ratti - 10 pages 91	
	6.8.1	Technolo	ogy options	
		6.8.1.1	Hybrid pixels	
		6.8.1.2	Deep N-well CMOS monolithic sensors	
		6.8.1.3	Monolithic pixels in CMOS quadruple well technology 94	
	6.8.2	Overview	w of the R&D activity	
		6.8.2.1	Front-end electronics for hybrid pixels in planar and 3D CMOS	
			technology	
		6.8.2.2	The Apsel DNW MAPS series	
		6.8.2.3	The Apsel4well quadruple well monolithic sensor	
	6.8.3	Radiatic	on tolerance	
6.9	Servic	es, Utiliti	es and E.S. & H issues - 4 pages 103	
	6.9.1	Service a	and Utilities	
	6.9.2	ES&H Is	ssue	
Drif	t Cham	ıber	109	

7 Drift Chamber

7.1	Overvi	ew - Finocchiaro, Roney 10 pages 109
	7.1.1	Physics Requirements - 3 pages
	7.1.2	Geometrical Constraints
	7.1.3	Machine Background Considerations - Cenci 3 pages 109
	7.1.4	DCH Design Overview - 2 pages 109
	7.1.5	Expected Performance - 2 pages 109
7.2	Design	Optimization - Finocchiaro, Hearty, Piccolo, Roney 9 pages 110
	7.2.1	Cluster Counting
	7.2.2	Cell Design and Layer Arrangement
	7.2.3	Gas Mixture
	7.2.4	R&D and Prototype Studies
		7.2.4.1 Prototype 1
		7.2.4.2 Prototype 2
		7.2.4.3 Single Cell Prototype(s)
		7.2.4.4 Aging studies: fields, gas gain
	7.2.5	R&D Future Developments
7.3	Mecha	nical Design
	7.3.1	Endplates
	7.3.2	Inner cylinder
	7.3.3	Outer Cylinder
	7.3.4	Choice of wire and electrostatic stability
	7.3.5	Feed-through design
	7.3.6	Endplate system
		7.3.6.1 Supports for on-detector boards
		7.3.6.2 Cooling
		7.3.6.3 Shielding 119

		7.4.2	Standard Readout - charge measurements specifications
			7.4.2.1 Resolution
			7.4.2.2 Dynamic range
			7.4.2.3 Linearity
		7.4.3	Standard Readout - time measurements specifications
			7.4.3.1 Resolution
			7.4.3.2 Dynamic Range
			7.4.3.3 Linearity
		7.4.4	Standard Readout - DCH Front-end system (block diagram) 120
		7.4.5	Standard Readout - ON-DETECTOR electronics
			7.4.5.1 Very Front End Boards
		7.4.6	Sampled Waveforms - specifications
			7.4.6.1 Resolution
			7.4.6.2 Dynamic range
			7.4.6.3 Linearity
		7.4.7	Sampled Waveforms - DCH front-end system (block diagram)
		7.4.8	Sampled Waveforms - ON DETECTOR electronics
			7 4 8 1 Very Front End Boards 122
	7.5	High V	Voltage system - Martin 1 page
		7.5.1	HV distribution boards - Standard ReadOut
		7.5.2	HV distribution boards - Sampled Waveforms
	7.6	Gas s	- Roney 2 pages
	7.7	Calibr	- Roney 3 pages
			7.7.0.1 Slow control systems
			7.7.0.2 Calibration
			7.7.0.3 Gas monitoring system
			7.7.0.4 On-line monitor
	7.8	Integr	ation - Hearty, Lauciani 6 pages
		7.8.1	Overall geometry and mechanical support
		7.8.2	Cable supports and routing
		7.8.3	Access
		7.8.4	Gas system 123
		7.8.5	Off-detector electronics crates
		7.8.6	High voltage crates
		787	Installation and alignment 123
8	Part	ticle Ide	entification 127
	8.1	Sumr	nary of Physics Requirements and Detector Performance goals
		8.1.1	Physics requirements
		8.1.2	Detector concept
		8.1.3	Charged Particle Identification
	8.2	Parti	cle Identification Overview
		8.2.1	Experience of BABAR DIRC
		899	Rarrol PID: Focusing DIRC (FDIRC) 120

	8.3.2	MC Simulation
	8.3.3	Effect of Background on performance Roberts
8.4	The I	Barrel FDIRC Detector Overview
	8.4.1	Impact on other systems Benettoni, Simi, Vavra
	8.4.2	Photodetectors
	8.4.3	Laser calibration system
	8.4.4	FDIRC Mechanical Design
	8.4.5	Electronics readout, High and Low voltage
	8.4.6	Integration issues
	8.4.7	FDIRC R&D Results until now
	8.4.8	Ongoing FDIRC R&D
	8.4.9	System Responsibilities and Management
	8.4.10	Cost, Schedule and Funding Profile
8.5	A pos	sible PID detector on the SuperB forward side
	8.5.1	Physics motivation and detector requirements
	8.5.2	Forward PID R&D activities
	8.5.3	The Forward task force
	8.5.4	The DIRC-like forward time-of-flight detector (FTOF)
		с ()
Elec	tromag	netic Calorimeter 185
9.1	Overv	iew
	9.1.1	Background and radiation issues
	9.1.2	Simulation tools
		9.1.2.1 Fastsim
		9.1.2.2 FullSim
9.2	Barrel	Calorimeter
	9.2.1	Requirements Relevant to the SuperB Environment
		9.2.1.1 Crystal Aging at BABAR
		9.2.1.2 Backgrounds
	9.2.2	Description of BABAR Barrel Calorimeter
		9.2.2.1 Mechanical design
		9.2.2.2 Readout
		9.2.2.3 Low-energy Source Calibration
		9.2.2.4 Light Pulser
	9.2.3	Performance of BABAR barrel
		9.2.3.1 Energy and position resolution
		9.2.3.2 Gamma-gamma mass resolution
		9.2.3.3 Radiation Damage Effects on Resolution
		9.2.3.4 Expected Changes in Performance at SuperB
	9.2.4	Electronics changes
		9.2.4.1 Rationale for changes
		9.2.4.2 Electronics design
	9.2.5	SLAC De-installation. Transport and Local Storage
	9.2.6	Electronics refurbishment
	927	Re-installation at Tor Vergata 200
	0.2.1	100 motalation at 101 forgate

9

		0.9.1.2 Optical and communication respectives	
		9.3.1.3 Radiation matchess	
	029	9.3.1.4 Specifications, Floutetion and Testing	
	9.0.2	0.2.2.1 ADD Product	
		9.3.2.1 AI D Readout	
		9.3.2.2 Electronics block diagram	
		9.9.2.3 Fleampiner	
		9.3.2.4 Shaper	
		0.2.2.6 Digitization	
	022	9.5.2.0 Requirements on mechanics	
	9.5.5	0.3.3.1 Initial IVSO calibration with source	
		9.3.3.1 Initial L150 calibration with source	
		9.3.3.2 Electronics calibration	
	0.2.4	9.5.5.5 Temperature monitoring and correction	
	9.3.4	0.2.4.1 Crystele	
		9.3.4.1 Orystals	
		9.3.4.2 Modules	
		9.3.4.3 Installation	
		0.2.4.5 Spara EWD modules survey and tests	
	0.2.5	Tests on Peam	
	9.5.5	9.3.5.1 Description of apparetus	
		0.3.5.2 Description of the beams	
		9.3.5.2 Description of data and calibration	
		9.3.5.4 Electronics poice measurements	
		9.3.5.4 Electronics noise measurements	
		9.3.5.6 Algorithms and results	
		0.3.5.7 Tost Boom at CEBN	220
	036	Alternatives	221
	5.5.0	9361 Full LVSO calorimeter	
		9362 Pure Cel	
		9363 BGO	224
		9364 Comparison among options	226
94	Backw	ard Calorimeter	228
0.1	941	Requirements	229
	0.1.1	9411 Energy and angular resolution	229
		9412 Background rates	230
		9413 Badiation hardness	230
		9414 Solid angle transition to barrel	231
	9.4.2	Mechanical design	
		9421 Calorimeter construction	232
		9.4.2.2 Support and services	
	9.4.3	SiPM/MPPC readout	
	9.4.4	Electronics	
	0.1.1		

	9.4.6	Backward simulation
	9.4.7	Performance in simulations
	9.4.8	Impact on physics results
	9.4.9	Use for particle identification
	9.4.10	Discussion of task force conclusions
9.5	Trigger	
	9.5.1	Calorimeter readout trigger
		9.5.1.1 Normal mode
		9.5.1.2 Calibration mode
	952	Calorimeter trigger primitives 240
9.6	Detect	or protection 240
0.0	961	Thermal shock 240
	9.6.2	Mechanical shock including earthquakes 240
	9.6.3	Fluid enille 240
	0.6.4	Floetricel surges outgres 240
	0.6.5	Padiation damage 240
0.7	9.0.5 Cost l	Radiation damage
9.1	0.7.1	WDS structure
	9.7.1	WBS structure
	9.7.2	Gantt chart
	9.7.3	Basis of estimates
	9.7.4	Cost and schedule risks
Inst	rumente	ed Flux Return 249

10 Instrumented Flux Return 249
10.1 Physics Requirements and Performance Goals
10.2 Detector Overview
10.2.1 The Absorber Structure
10.2.2 The Active Detector Choice
10.3 Backgrounds
10.3.1 Main background sources
10.3.1.1 Neutron Background
10.3.1.2 Charged Particles
10.3.1.3 Photon background
10.3.2 Background remediation
10.3.3 Radiation doses on the IFR detector
10.4 Identification Performances
10.4.1 Muon Detection
10.4.2 K_L Detection
10.5 Detector R&D
10.5.1 Module Tests and Results
10.5.1.1 Scintillators
10.5.1.2 Fibers
10.5.1.3 Photodetectors
10.5.1.4 Other related studies
10.5.1.5 New R&D studies 259

10.5.3 Design and construction of the IFB prototype	260
10.5.3.1 Beam Tests	261
10.5.3.2 Tests Results	261
10.6 Baseline Detector Design	263
10.6.1 System Layout	
10.6.2 Chamber Construction and Assembly	
10.7 Front-End Electronics	
10.7.1 Introduction	
10.7.2 Photodetectors and PCBs	
10.7.2.1 Photodetector PCB and optical coupling to fi	pers
10.7.2.2 Optical coupling to fibers	
10.7.2.3 Photodetector location	
10.7.2.4 Photodetector choice	
10.7.2.5 Aging and background issues	
10.7.2.6 Temperature requirements	
10.7.3 IFR readout electronics: an overview	
10.8 Final assembly and installation	
10.9 ES&H issues	
10.10Structure of the IFR group	
10.11Cost and schedule	
11 Magnet and Flux Return	273
11 Magnet and Flux Return	273
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online	273 275
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.1 Open Lyuka for Pisa Meeting	273 275
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.1 Open Issues for Pisa Meeting	273 275
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.0 Trigger Data Picture	273 275 275 275 275 276 276
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Trigger Tate and Event Size Estimation	273 275 275 275 275 276 276 276 276 276 276 276 276 276 276
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations	273 275 275 275 275 276 276 276 276
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Electronics	273 275 275 275 275 276 276 276 278 278 278
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain	273 275 275 275 275 276 276 276 278 278 278 278
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Lorget 1 Trigger	273 275 275 275 275 276 276 276 276 278 278 278 279 279 279
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Evel-1 Trigger	273 275 275 275 275 276 276 276 276 278 278 278 279 279 279 279
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Timing	273 275 275 275 275 276 276 276 276 278 278 278 279 279 279 279 283 287 289 287
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front End Electronics	273 275 275 275 275 276 276 276 278 278 278 278 279 279 279 279 279 279 279 279
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front-End Electronics 12.4.6 Bead Opt Medice	273 275 275 275 275 276 276 278 278 278 278 279 279 279 279 279 279 279 279
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front-End Electronics 12.4.6 Read-Out Modules 12.4.7 Network Event Buildor	273 275 275 275 275 275 276 276 278 278 278 279 279 279 279 279 279 279 279
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front-End Electronics 12.4.6 Read-Out Modules 12.4.7 Network Event Builder	273 275 275 275 275 276 276 276 278 278 278 279 279 279 279 279 279 279 279
 11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front-End Electronics 12.4.6 Read-Out Modules 12.4.7 Network Event Builder 12.4.8 High-Level Trigger Farm 	273 275 275 275 275 276 276 276 278 278 278 278 279 279 279 279 279 279 279 279
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front-End Electronics 12.4.7 Network Event Builder 12.4.8 High-Level Trigger Farm 12.4.8 High-Level Trigger Farm 12.4.9 Data Logging	273 275 275 275 276 276 276 278 278 278 279 279 279 279 279 279 279 291 291 291 292 293 294 294 295
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front-End Electronics 12.4.7 Network Event Builder 12.4.8 High-Level Trigger Farm 12.4.9 Data Logging 12.4.5 Control and Error Handling	273 275 275 275 275 276 276 276 278 278 278 278 279 279 279 279 283 283 291 291 291 292 293 294 294 295
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front-End Electronics 12.4.6 Read-Out Modules 12.4.7 Network Event Builder 12.4.8 High-Level Trigger Farm 12.4.9 Data Logging 12.5 System Integration and Error Handling 12.5 Lettronics Control Systems 12.6 Control Systems	273 275 275 275 275 276 276 276 278 278 278 278 279 279 279 283 283 283 283 291 292 291 292 294 294 294 295 296
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front-End Electronics 12.4.7 Network Event Builder 12.4.8 High-Level Trigger Farm 12.4.9 Data Logging 12.5 System Integration and Error Handling 12.6 Control Systems 12.6 Detector Control System	273 275 275 275 275 276 276 278 278 278 279 279 279 279 283 279 291 291 292 293 293 294 294 295 295 296
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2. Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.4 Control and Data Links 12.4.5 Common Front-End Electronics 12.4.7 Network Event Builder 12.4.8 High-Level Trigger Farm 12.4.9 Data Logging 12.4.10 Electronics Control System 12.4.2 Levertor Control System	273 275 275 275 275 276 276 278 278 278 279 279 279 279 283 283 283 287 291 292 293 292 293 294 294 295 295 296 297
11 Magnet and Flux Return 12 Electronics, Trigger, Data Acquisition and Online 12.1 Open Issues for Pisa Meeting 12.2 Architecture Overview 12.2.1 Trigger Strategy 12.2.2 Trigger Rate and Event Size Estimation 12.2.3 Dead Time and Buffer Queue Depth Considerations 12.3 Electronics in the SuperB Radiation Environment 12.4 Trigger and Event Data Chain 12.4.1 Choice of Global Clock Frequency 12.4.2 Level-1 Trigger 12.4.3 Fast Control and Timing System 12.4.5 Common Front-End Electronics 12.4.6 Read-Out Modules 12.4.7 Network Event Builder 12.4.8 High-Level Trigger Farm 12.4.9 Data Logging 12.5 System Integration and Error Handling 12.6 Control Systems 12.6.1 Electronics Control System 12.6.3 Farm Control System 12.6.3 Farm Control System	273 275 275 275 275 275 276 276 278 278 278 279 279 279 279 279 279 279 279

12.7.2 Other Components	
12.7.3 Software Infrastructure	
12.8 R&D for Electronics, Trigger and Data Acquisitio	n and Online
12.9 Organizational Structure of Electronics, Trigger, I	Data Acquisition and Online 298
12.10Conclusions	
13 Subdetector Electronics and Infrastructure	303
13.1 Subsystem-specific Electronics	
13.1.1 SVT Electronics	
13.1.2 DCH Electronics	
13.1.2.1 Design Goals	
13.1.2.2 DCH Front-end system (block dia	agram)
13.1.2.3 Standard Readout - OFF DETEC	CTOR electronics
13.1.2.4 Sampled Waveforms - OFF DETI	ECTOR electronics
13.1.2.5 Front End Crates	
13.1.2.6 Number of crates and links	
13.1.2.7 ECS	
13.1.2.8 Cabling	
13.1.2.9 Power Requirements	
13.1.3 PID Electronics	
13.1.3.1 The TDC chip	
13.1.3.2 The Front-end Crate	
13.1.3.3 The Communication Backplane	
13.1.3.4 The PMT Backplane	
13.1.3.5 Cooling and power supply	
13.1.3.6 The front-end board \ldots \ldots	
13.1.3.7 The crate controller board (FBC))
13.1.4 EMC Electronics	
13.1.5 IFR Electronics	
13.2 Electronics Infrastructure	
13.2.1 Power supplies, grounding and cabling	
13.2.1.1 Power Supply to the Front-end:	
13.2.1.2 High Voltage Power Supply to the	e Detectors:
13.2.2 Grounding and Shielding	
13.2.3 Cable Plant	
14 Software and Computing	325
14.1 Computing Overview F.Bia	anchi 2 pages
14.2 Tools to support detector studies	F.Bianchi 1 pages
14.2.1 Full Simulation A. Di Simone - E.	Paoloni - A. Perez 4 pages 325
14.2.1.1 Bruno: the SuperB full simulation	n software
14.2.1.2 Geometry description	
14.2.1.3 Simulation input: Event generato	ors
14.2.1.4 Simulation output: Hits and Mon	nteCarlo Truth
14.2.1.5 Simulation optimization	
14.2.1.6 Staged simulation	

14.2.1.6	Staged simulation		 		 327
14.2.1.7	Interplay with fast	simulation	 		 327
	· · · · · · · · · · · · · · · · · · ·	0.13	 A	<i>n</i> .	222

		14.2.2.2 Detector description
		14.2.2.3 Interaction of particles with matter
		14.2.2.4 Detector response
		14.2.2.5 Reconstruction
		14.2.2.6 Machine backgrounds
		14.2.2.7 Analysis tools
		14.2.2.8 Simulation validation and detector studies
	14.2.3	Distributed computing tools G. Donvito - A. Fella - E. Luppi - S. Pardi L.
		Tomassetti 10 pages
		14.2.3.1 Distributed resources
		14.2.3.2 Distributed systems design: a bird's-eye view
		14.2.3.3 The production system
		14.2.3.4 The data analysis system prototype
		14.2.3.5 The bookkeepieng and data placement database $\ldots \ldots \ldots 337$
	14.2.4	Collaborative tools M. Corvo - A. Gianoli - S. Longo - R. Stroili 2 pages . 338
		14.2.4.1 Overview
		14.2.4.2 Authorization
		14.2.4.3 Portal System
		14.2.4.4 Document repository
		14.2.4.5 Documentation
		14.2.4.6 Code repository
		14.2.4.7 Code packaging and distribution
14.3	Compu	nting model outline F. Bianchi - A. Fella - C. Grandi - S. Luitz - E. Luppi -
	S. Pare	di - L. Tomassetti 6 pages
	14.3.1	Data processing
	14.3.2	Resource estimate F.Bianchi - S. Luitz 4 pages
	14.3.3	Computing Infrastructure F.Bianchi - S. Luitz - S. Pardi 4 pages 342
14.4	R & D	program M. Corvo - G. Donvito - A. Fella - F. Giacomini - S. Longo - S.
	Pardi 8	8 pages
	14.4.1	R& D on parallelization
	14.4.2	GPU R& D
	14.4.3	Pramework R & D
	14.4.4	DIRAC framework evaluation
		14.4.4.1 Fliot jobs model
		14.4.4.2 DIrac data management
		14.4.4.5 DIRACAFI
		14.4.4.4 User Management
		14.4.4.6 SuperPDIPAC module 250
		14.4.4.7 Building up a DIRAC Infrastructure for SuperB 250
		14.4.4.8 Future Works 250
	14.4.5	Data management and distributed storage R&D 250
	14.4.0	14.451 Wan data access 251

	14.4.5.4	Dynamic file catalogue t	echnology
	14.4.5.5	Storage system evaluation	on
1.6	Reconstr	uction Framework	F. Bianchi 4 pages
ł.7	Analysis	Framework	F. Bianchi 4 pages
nm	ary	F	Bianchi 1 pages

s, Mechanical Integration and Assembly

roduction									
1.1 Magnet and Instrumented Flux Return									
nponent Extraction									
nponent Transport									
ector Assembly						•			

erB Collaboration and Project Management

laboration Membership
$ \geq$ SuperB Spokesperson
$ \geq \text{Super}B \text{ Executive Board } \dots $
$ \geq$ SuperB Management Team and Management Plan
ernational Finance Review Committee
eraction with the Cabibbo-Lab
nmunications
struction Responsibilities

1 Schedule

ector Costs .																		
is of Estimate																		
edule																		

MDI

Eugenio Paoloni (+Alejandro Perez)

- Several improvements to the detector model where implemented for Summer-2012 production (Geometry_CABIBBO-V03)
 - Final focus: more realistic W-shield compatible with space available and integration constrains. Conical shape of 3cm thick and cylindrical shape 4.5cm thick with increased external radius.
 - SVT: newest L0 model (F. Bosi). L1-5 model adapted to the SuperB angular coverage (±300 mrad)
 - ▷ DCH: Internal radius increased to make room for W-shield (265 → 265 mm); new foils of copper and Aluminium according to latest machanical drawings
 - EMC: Hybrid CsI-LYSO fwd-end-cap model and RadFET monitors
 - > IFR: new iron/Boron-loaded-polyethylene shields
 - » Detector Hall: more realistic model using Fabrizio Raffaeilli drawings
 - Solenoidal detector field: field was extending beyond the Super-conducting magnet volume and was not zero inside the FDIRC FBLOCK.
- NOTE: found a problem with FDIRC geometry related with the MaPMT photocathode using BK7. The problem was fixed (changing material to Aluminium) and committed but not in time for Summer-2012 production. Summer-2012 samples are still usable applying a post-production patch. New production will be run if needed.

- We are continuously our background model. The usual samples have been studied
 - Rad-Bhabha with ΔE/E = κ > 30%. This is the main Rad-bhabha component giving backgrounds on the detector.
 - Pairs, Touschek HER/LER and Beam-Gas

In this cycle we also produced for the first time two other background sources

- Rad-Bhabha with $0.5 < \kappa < 30\%$
 - This range models the a significant fraction of the total Radbhabha losses at the for |Z| > 10m (first downstream dipoles)
 - These losses can contribute significantly to the neutron cloud build up process
- Synchrotron Radiation (SR). See next slide.

Zmpporti - Detector Status

15

September 19, 2012

SVT

Giuliana Rizzo

3. Fastim performance comparison for striplets and pixel in Layer0 completed

- As expected pixel performance more robust in high background (pixel occup. 200 times smaller than striplets)→ main motivation for pixel upgrade for full luminosity.
 - With x5 background, sensitivity to S reduced by 15% with striplets, while only 3% degradation seen with pixel with same material budget assumed.
- > Thinner pixel options can further improve S sensitivity even with nominal background

EABIBBO T – Update (III)

- 4.---Higher neutron fluence found in SVT (bug fix) and effect on FE noise reavaluated
 - > S/N marginal in L4-5 with 7.5 yrs x5 safety
 - A few knobs to improve the situation. Reduce:
 - Reduce ambient temperature (T=12°C, in this table) & shaping time. Neutron shield in the hall?

R&D on pixel:

- INMAPS MAPS with high resistivity epi layer under test:
 - Better charge collection evident with Fe55 spectrum
 - Irradiation with neutrons performed (4 steps up to 1x10^14 n/cm2) and chips are being tested now.

> Getting ready for Nov. testbeam at CERN

Layer	View	Shaping time	S/N at the start of data taking	S/N in 75 ab-1	S/N in 75 ab-1 x5 bkg
0	1	25	17	17	16
0	2	25	17	16	
1	phi	75	21	20	16
1	z	75	32	27	18
2	phi	100	22	20	16
2	z	100	34	27	18
3	phi	150	27	21	14
3	z	150	34	27	16
4	phi	500	22	17	10
4	z	500	29	19	11
5	phi	750	22	14	8
5	z	750	30	18	10

INMAPS CMOS process with 4 wells & high resistivity to improve charge collection efficiency and radiation resistance September 19, 2012

DCH

Giuseppe Finocchiaro and Mike Roney

DCH prototype beam tests at TRIUMF

Goals:

- establish benefits of cluster counting on PID
- test amplifier prototypes
- study impact on PID of design choices (sense wire, cables, connectors, gas gain)
- Five prototype amplifiers provided by JP Martin (Montreal).
- Input impedance 50, 170 or 380 Ω ; chamber impedance = 380 Ω , terminated at non-readout end.
- High impedance gives better charge collection efficiency, but stray capacitance may give low bandwidth.
- Experimentally determine best performance.
- NEXT BEAM TEST: November 2012 with LNF team bringing PROTO-2 28 sense wire chamber to TRIUMF

e⁺, μ^+ , π^+ at 140–350 MeV/c. μ/π separation here $\approx \pi/K$ separation at 2–3 GeV/c

Waveforms from prototypes with 20 μ m (red) and 30 μ m (blue) sense wire. Yellow curve is TOF signal

Initial Cluster Counting Analysis with TRIUMF test beam data

- 140MeV/c μ/π
- Use a likelihood ratio: $R = L_{\mu}/(L_{\mu}+L_{\pi})$ to select muons $(L_{\mu} \text{ and } L_{\pi} \text{ are }$

2D Gaussians) No. clusters vs Truncated Mean Blue = muons, Red = Pions

(a) Real data. Combining cluster counting with truncated mean substantially improves PID

1100

1000 950

 For 1% efficiency for pion selection, muon efficiency increases from 72% for truncated mean alone to 86% by adding cluster counting information

New design (50% higher BW) of Proto II Preamp

DCH geometry option comparison

New FastSim configurations including:

- Updated inner radius (265mm)
- Updated inner cylinder thickness (0.5mm)
- Updated wire layout (previous studies used BaBar layout)
- 5 different endcap geometries/ DCH lengths

PID

Nicolas Arnaud and Jerry Va'vra

- Added 8 inches of lead absorber to CRT to increase the cut off muon energy to ~2 GeV.
- > The scanning setup with IRS-2 electronics is working.
- **FDIRC** is in CRT and ready to start taking data.
- ▶ 512 pixels instrumented with the IRS-2 electronics.
- ▶ ~97% of channels working.
- First short dst file produced.
- Will start tuning the analysis soon.
- MC program is close to producing pixel constants.
- Measured the refraction index of SES-403 RTV.
- > PID TDR chapter finished.
- **Budget estimate for barrel PID is completed.**
- Analysis of the Summer 2012 background production is ongoing
- Rad Bhabha rates lower (15-20%) than in Elba as fake hits were due to the use of a wrong material to simulate the MaPMT photocathode
- **TDC chip (SCATS) tests ongoing at LAL chip sent to Bari as well**

- Analysis of the Summer 2012 bkg samples in progress
- TDR section about the forward PID almost complete FARICH report to be added (requested late)
- Still missing report from the integration group about the exact space available in the forward region of SuperB for the FTOF

EMC

Claudia Cecchi and Frank Porter

EMC at this meeting

- Wednesday 16:30-18:30
 - Chih-hsiang Cheng Fastsim updates
 - Shawn Osier Discussion of barrel transport
 - Criso Sciacca Barrel transport options
 - Valerio Pettinacci Forward mechanics
- Thursday 08:30-10:30
 - Elisa Manoni Validation of the new implementation of fastsim
 - Stefano Germani Updates on fullsim
 - Claudia&Frank Discussion of TDR, budget,& schedule
- Thursday 11:00-13:00
 - Paolo Gauzzi Updates on measurements for the noise study in the barrel
 - Alessandro Rossi Csl measurements
 - Gerald Eigen Backward EMC

EMC status

- ► TDR
 - Mostly written, but significant pieces to finish
 - Editing is underway
- Budget&Schedule
 - Have begun to re-do white paper WBS
 - Work on schedule also begun; Detailed cost and schedule draft for barrel disassembly from Shawn Osier
- Simulations Both fastsim and fullsim have been updated
- Two spare endcap modules shipped to Roma1 for mechanical studies

Fullsim – Fastsim comparison

Spare endcap module shipping

View from IP

(Note the red...)

Wander Baldini

The GELINA irradiation test

- 9-20 July at the GELINA facility (Geel, Belgium)
- The facility: 100 MeV linac, electrons on Uranium target + moderator to obtain a neutron beam similar to superB in the low energy range (≤ keV)
- Several Hamamatsu, FBK and SenSL devices:
 - 25,50,100 μm pixels
 - 1x1, 3x3 mm² active area
 - Radiation Hard devices from Hamamatsu (3x3 mm²)
- Measured:
 - Dark Current/Noise vs dose
 - I-V curves
 - Threshold scan
 - Dark spectra for a subset of SiPMs
- Total integrated dose: 1.86 x 10¹⁰ n/cm² (about 2 running years x safety factor 5)

Update on background simulation and shielding

- New MC production with more shielding all around the detector:
 - 10 cm Fe + 10 cm Polyethylene-Boron in front of each encap
 - 10cm Polyethylene-Boron external to the Barrel
 - 5cm Polyethylene-Boron between solenoid and L0
- Useful exercise to understand effect of shielding even if rather difficult to implement
- Clear effects on barrel and endcaps Layer 7, Endcaps L0 still exposed to high neutron flux

Update on R&D

- Development in Bologna of a detailed FLUKA simulation and comparison with measured data for 25 and 200 cm scintillator bars
- Some adjustments needed but the overall behaviour is well reproduced (at a 10-20% level)
- Very useful (and time-saving) to understand effects of:
 - Fibers-SiPM misalignments (both axial and transversal)
 - Position/number of fibers in the scintillator

The IFR workshop

- Held in Krakow 7-9 Sept.
- Many interesting discussions about all the main topics related to the IFR design and construction
- Many thanks to Our IFJ-PAN, AGH, CUT colleagues for the perfect organization

TDR Status and next activities

- The writing of the TDR is ~80% complete
- All our efforts, in the next weeks, will be dedicated to the TDR finalization

Other short term future activities:

- Continue the irradiation test data analysis
- Finalization of the Testbeams data analysis
- Background studies and remediation

ETD/Online

Dominique Breton, Umberto Marconi, Steffen Luitz

CABIBBOLAB LABORATORIO NICE TID Progress

- Things have been very quiet since Elba
- Main focus has been on completing the TDR
 - ETD/Online chapter almost complete
 - > We have solutions for remaining design "issues", to be discussed and agreed upon during this meeting
 - Major progress in "writing", after this meeting ready for editorial review
 - Electronics chapter

- Missing some subdetector contributions (in the new short format)
- Some editorial work on "infrastructure" still required
- WBS and cost estimates
 - Have been updated, however in-depth review of the subdetector electronics still required
 - Will do during this meeting
- We have 3 sessions will use all time to go through TDR and WBS
 - Ist session: common ETD/Online
 - 2nd and 3rd sessions: Sub-Detectors
- Note: We should seriously consider changing the global clock from 59.5 to 39.66MHz (RF/8 -> RF/ 12)
- This would allow the use of a lot of technology developed for LHC (components, links, even systems)
- Would allow for savings in cost and effort Will discuss during this meeting sorry proposing this
- so late! The few people I talked to seemed quite positive .

Integration

F.Raffaelli, W.Wisniewski

Topics of Meeting of Detector Integration at SLAC and problems solved

- During the meeting we review all detector interface going through the reference Babar drawing comparing it to the SuperB reference drawing.
- We compare the available space for the SuperB services.
- We check the envelope of the sub-detector measuring the reusable Babar parts.
- We discuss the EMC transportation.
- We discuss the new backward shielding modularity and the BMC integration.
- We were able to update the detector envelope

Survey was made and inspection was made after the meeting

- Forward calorimeter service envelope
- Wire chamber supports.
- Dirch inner tube measurements.

Its envelope (added thickness) can be evaluated, approximately and conservatively, 60 mm for the inner ring and 20 mm for the external area.

FWD Cal calibration system

Survey was made and inspection was made after the meeting

• Wire chamber supports

Supporting the SuperB detectors backward end

19 settem Bcal support extension

LOWER EXTERNAL REMOVABLE SHIELDING

ABIBBOLAB Interaction with accelerator team

- Need to be boosted, with more regular technical contact
- Large questions need to be addressed soon
 - ▶ IR Hall: dimensions, layout, services, power, cooling, cryo, etc.
 - Envelopes in Machine-Detector Interface. Strategies for mechanical integration between detector and machine
 - Commissioning strategy: the full 1.5T field is needed for machine commissioning. Big impact on detector assembly and commissioning strategy → being investigated
 - Overall schedule: need to start laying down the overall integrated schedule for accelerator and detector construction

Agenda

SuperB Collaboration Meeting Pisa University and INFN September 19 - 22, 2012 AGENDA

All Plenary Sessions will be held in Aula G (Bldg B)

	Wednesday, September 19		Thursday, September 20		Friday, September 21		Saturday, September 22
	CLOSED MEETINGS		PARALLEL 2		PARALLEL 6		CLOSED MEETINGS
250	Technical Board (restricted)	131 248 250 230 133	SVT DCH PID EMC IFR	131 230	ETD 2 COMP + BKGND (Fullsim)	250	Technical Board TDR Editorial Board (restricted)
10:30	Coffee Beak and Registration	10:30	Coffee Beak	10:30	Coffee Beak	10:30	Coffee Beak
11:00	CLOSED MEETINGS	11:00	PARALLEL 3	11:00	PARALLEL 7	11:00	CLOSED MEETINGS
250	Technical Board (restricted)	131 248 250 230 133	SVT DCH PID EMC IFR	131 250	ETD 3 Integration	250	Technical Board TDR Editorial Board <i>(restricted)</i>
13:00	Lunch and Registration	13:00	Lunch	13:00	Lunch	13:00	Adjourn
14:00	PLENARY 1	14:00	PARALLEL 4	14:00	PLENARY 2	14:00	
10' 20' 20' 20' 20'	Introduction and Status Welcome Meeting Goals (M. Giorgi) Physics (A. Bevan) Computing (F. Bianchi) Detector (F. Forti)	131 250 230	ETD 1 MDI/Backgrounds COMP: R&D	30' 30' 20' 20' 15'	Accel and Cabibbo Lab Status Accel Status (A. Variola - phone) Cabibbo Lab Status (M. Giorgi) Integr, Inst, IR Hall Summary MDI Summary Comp Summary		
16:00	Coffee Break and Registration	16:00	Lunch	16:00	Lunch	16:00	Adjourn
16:30	PARALLEL 1	16:30	PARALLEL 5	16:30	PLENARY 3	16:30	
131 248 250 230 133 241	SVT DCH PID EMC IFR 17:30-19:30 - Ex Bd (restricted)	250 230 131	MDI/Backgrounds COMP: Distributed Comp 17:30-19:30 - COUNCIL	15' 15' 15' 15' 15' 15' 20'	Summaries SVT DCH PID EMC IFR ETD Council-and Exec-Board-Report		
18:30		18:30		18:30		18:30	
		20:00	Social Dinner				

DETECTOR TIMELINE CARTOON

