Update on noise studies with a CsI(Tl) crystal

P.Gauzzi, L.Recchia Roma1 EMC group

5th SuperB Collaboration Meeting Pisa – 20/9/2012

Experimental setup

- Aims of this test: evaluate the effect of a FEE with short integration time on the EMC performance
- Crystal readout on one side by either an APD or a PIN diode followed by a charge amplifier (CSP) and by a shaper
 PMT on the other side for trigger

Configurations studied

- 1) APD CSP Cremat i.t. 140 µs shaper 500 ns
- 2) APD CSP Hamamatsu H4083, i.t. 100 ns shaper 500 ns
- 3) APD CSP Hamamatsu H4083 i.t. 100 ns shaper 250 ns
- 4) APD CSP Hamamatsu H4083 i.t. 100 ns shaper 100 ns
- 5) APD CSP LABE Rome-1 prototype (LNA02V0) i.t. 100 ns shaper 500 ns
- 6) PIN CSP Hamamatsu H4083 i.t. 100 ns shaper 500 ns
- 7) PIN CSP Cremat i.t. 140 µs shaper 500 ns
- 8) PIN CSP LABE Rome-1 prototype (LNA02V0) i.t. 100 ns shaper 500 ns
- 9) Check: PIN readout with BaBar electronics
 - APD: 0.5×0.5 cm² size, operated at 340 V and 380 V
 - PIN diode from BaBar: 1 × 2 cm² size (only one of the two is readout), operated at 60 V
 - LNA02V0 proto. similar to Hamamatsu, but slightly slower (400 ns rise time vs 300 ns) P.Gauzzi

Signal evaluation

- Events acquired by a LeCroy digital oscilloscope (12 bits)
- Waveforms recorded at a sampling rate of 20GS/s

50000 events / measurement

• The shaper is sensitive to the amplitude: \Rightarrow APD / PIN signal = maximum amplitude for T > 6000

Average signals

Example: APD - CSP Hamam. i.t. 100 ns – s.t. 500ns

Divide into 6 regions:

- 0) pedestal
- 1) crystal bckg
- 2) 1.17 MeV peak

- 3) 1.33 MeV peak
- 4) tail of crystal bckg
- 5) sum 1.17 + 1.33 MeV

P.Gauzzi

6

Noise evaluation

from the widths of the distributions

energy scale from the peaks

PIN with LNA02V0

Two different PINs tested

Noise evaluation

• Slightly better than the Hamamatsu (2.5 MeV)

P.Gauzzi

Pick-up of PMT signal

0.0005

0

0.5

- PIN covered with black paper
- Amplifier: LNA02V0

- Small effect
- PIN insulation has been improved (still analyzing data)

1.5

1

2

E (MeV)

2.5

PIN with BaBar FEE

• To check the performance of our experimental setup, we performed the PIN readout with the BaBar FEE

PIN with BaBar FEE

PIN with BaBar FEE

$$\frac{0.7 \text{ mV}}{0.9 \text{ mV/MeV}} = 0.78 \text{ MeV}$$

• 780 keV → 550 keV (only one PIN readout)

Noise in mV

Configuration	$V_{APD} = 340 V$	$V_{APD} = 380 V$	PIN
Cremat 140 μ s + sh. 500 ns	2.4	3.3	1.5
Hamamatsu 100 ns + sh. 500 ns	2.9	4.5	2.5
Hamamatsu 100 ns + sh. 250 ns	5.1	6.0	
Hamamatsu 100 ns + sh. 100 ns	5.3	6.0	
proto. LNA02V0 100 ns + sh. 500 ns		3.0	1.5
Babar FEE			0.7

Energy calibration

p₁ [**mV** / **MeV**]

Configuration	$V_{APD} = 340 V$	$V_{APD} = 380 V$	PIN
Cremat 140 μ s + sh. 500 ns	1.8	5.3	2.7
Hamamatsu 100 ns + sh. 500 ns	2.3	5.3	1.0
Hamamatsu 100 ns + sh. 250 ns	1.5	4.8	
Hamamatsu 100 ns + sh. 100 ns	1.2	4.0	
proto. LNA02V0 100 ns + sh. 500 ns		5.3	0.8
Babar FEE			0.9

Noise [MeV]

Configuration	$V_{APD} = 340 V$	$V_{APD} = 380 V$	PIN	(*)
Cremat 140 μ s + sh. 500 ns	1.3	0.62	0.56	\rightarrow 0.4 MeV
Hamamatsu 100 ns + sh. 500 ns	1.3	0.85	2.5	\rightarrow 1.8 MeV
Hamamatsu 100 ns + sh. 250 ns	3.4	1.3		
Hamamatsu 100 ns + sh. 100 ns	4.4	1.5		
proto. LNA02V0 100 ns + sh. 500 ns		0.57	1.9	\rightarrow 1.3 MeV
Babar FEE			0.78	\rightarrow 0.55 MeV

(*) Noise with PIN should be divided by $\sqrt{2}$, because we readout only one PIN

Conclusions

- We studied the effect of a FEE with short integration time on a CsI(Tl) crystal readout by a PIN diode
- Noise at level of 1.3 1.8 MeV
- Still too high compared to the requirement of 0.5 MeV

Check: new meas.of Hamamtsu

Check: new meas.of Hamamtsu

• Same slope and offset (new: 9/7/2012 – old: 21/5/2012)

Check: new meas.of Hamamtsu

$$\frac{\mathbf{2.5} \text{ mV}}{1 \text{ mV/MeV}} = \mathbf{2.5} \text{ MeV}$$

⁶⁰Co spectrum with PMT

