Distributed storage works update

SuperB Collaboration Meeting Pisa, Sept. 20th 2012

Paolo Franchini (CNAF) for the distributed storage group

Distributed storage R&D

- Data access dedicated library development
- New generation mass data transfer system (FTS3 evaluation)
- New generation file catalog solutions
- Geographically distributed data center (design study)
- Data model definition study

WAN data access

- Experiment use cases:
 - interactive usage of SuperB data
 - analysis code writing and debugging
 - analysis tasks executed on non SuperB resources
 - job execution on small sites like Tier3s
 - safeness in case of storage failure
- Network protocols
 - xrootd and HTTP:
 - support posix-like calls
 - capabilities of work through routers and firewalls
 - caching and pre-fetching mechanism
 - supported by ROOT framework

HTTP data access test

• Test goals:

- measure the latency period due to the increase number of parallel read stream
- measure the latency period due to the increase of round trip time elapsed between source and destination
- support the development of a general, experiment wide, data access software layer
- start the characterization of a concrete WAN scenario, including traffic impact, typical latency, network resource overloading

• Test layout definition:

- 1, 5, 10, 50 and 100 parallel set of read streams
- each stream reads a random files according to a trace file obtained from an analysis application
- 250 compressed root files, 500 MB each
- sources: INFN-T1 and INFN-Bari
- destinations: INFN-T1, INFN-Bari, INFN-Napoli, GRIF, Caltech
- measured the time of the cURL execution

proof-of-concept

HTTP data access test: results Proof of Concept

- The network latency influences the read stream operations for all the routes
- The link congestions affect the case of single read-stream also on short routes
- The dips of the curves can be the effects of a specific link-tolink overload

Data access library

- R&D work for the development of a library permitting an optimized data access management
- Features:
 - intelligent pre-fetching and buffering algorithms
 - logical file name map with different physical storage URI
 - possibility of support to unsupported ROOT storage protocols
 - read-head buffer and caching mechanism in order to solve the overhead

Library approaches

- High level: library wrapper of ROOT data access/download methods
 - pros: simple sbROOT deployment, coherent lib insertion in experiment framework, user learning curve minimized in terms of simple code package linking
 - cons: users need to stop using ROOT primitives, old libraries/code should be updated to include new SuperB custom data access methods
- Low level: new file protocol developing a ROOT class
 - pros: code and development users practices do not need to be modified
 - cons: need an ad-hoc ROOT implementation, with the risk of including functionalities out of the scope of a protocol implementation
- **Configuration driven**: need a ROOT configuration interface in order to change the data access according to a set of parameters.

Library approaches

- Philippe Canal, from the ROOT team, suggested to implement the low level approach with a new protocol
 - In this case the library code has to be distributed external from a ROOT distribution
 - Users have to load the library and a configuration file
- The initial idea was to implement the library within the software framework.

Library state-of-art: libSbNet

- The library input is the catalog name (lfn://) of the file that must be used in the analysis
- The library output is the local file name (file://) that ROOT can use in the analysis
- In order to obtain the output the library first checks the default storage element, defined in the environment variable V0_SUPERBV0_ORG_DEFAULT_SE.
- If this SE returns a valid file:// TURL the work is done...

Library state-of-art: libSbNet

- If the default SE has some problem the library uses the lcg API (lcg_lr) to obtain the list of the file replicas, sorts them according to route distance, then asks every SRM a valid file:// TURL
- If the file:// protocol is not available, then falls down to slower protocols, first http:// (not yet implemented) and eventually gsiftp://
- In the gsiftp:// case the lib copies the file locally and returns its full local path at the caller.
- It's up to the lib caller to delete this temporary file at the end of its use.

Hadoop testing: activity status

- Developed a policy to distribute data among different farm
 - Under test on a geographically distributed cluster between INFN-Bari and INFN-Naples
 - Using Cloudera HADOOP (HDFS-2.0)
- Testing of the new version of HADOOP 2.0
- Testing of the Kerberos security on HADOOP
- Monitoring:
 - Configuration of Ganglia plugin
 - Development of ad-hoc script for monitoring the data location
- Developing automatic script for installing and configuring HADOOP

Hadoop testing: next steps

- Adding another site to the geographical testbed
- Performance and stress test within a single farm up to 250 worker nodes
- Performance and stress test among geographical sites
- Testing the reliability of geographical automatic replica

Future plans

- Library development: implement the protocol identification, data access optimizations, integration in ROOT system
- Wan data access: setup of a new testbed using the library with more statistic and more control, using HTTP and xrootd.
- HadoopFS on WAN: perform a complete performance and functionality test → full report for the December CM
- FTS3 test with RAL service setup