September 19th, 2012 SuperB-SVT meeting, Pisa

update on Strasbourg activities on CMOS pixel developments

Exploration of 0.18 µm technology with MIMOSA-32: preliminary results on radiation hardness

Isabelle Ripp-Baudot PICSEL group: http://www.iphc.cnrs.fr/PICSEL.html IPHC Strasbourg CNRS/IN2P3 and Université de Strasbourg

MIMOSA-32 prototype

- Submitted in Oct. 2011, delivered in January 2012.
- Technology:
 - 0.18 µm.
 - epitaxial layer: 18 μm thick, High-Resistivity 1-5 k $\Omega.cm.$
 - read-out: rolling shutter.
- Prototype sub-divided in several blocks:
 - Explore pixel sizes: 20x20, 20x40 and 20x80 μm^2 .
 - Explore charge amplification and collection systems: diode sizes ~9-15 µm²,
 - → pixels labelled PI-P9, L4-I and L4-2.
 - Explore discrimination:
 - I discriminator at each column end,
 - in-pixel discrimination ($16x80 \ \mu m^2$ pixels).
 - → total surface ~ 43 mm².
- Preliminary laboratory and beam tests results on: noise, SNR, detection efficiency, cluster multiplicity.

experimental setup

- Lab tests:
 - ⁵⁵Fe source.
- Beam tests:

 - · Telescope: strip sensors.
 - Trigger: scintillator $\sim 2x2 \text{ mm}^2$.
 - Beam: SPS T4-H6 line, 60 and 120 GeV $\pi^{\text{-}}$.
- Tests performed on CMOS sensors:
 - $-T_{coolant} = 15 \text{ and } 30 \,^{\circ}\text{C}.$
 - Ionising doses: I and 3 MRad.
 - Non-ionising fluences: 0.3 1.0 3.0 $\times 10^{13}$ n_{eq} / cm²,
 - Combined irradiations: I MRad + 10^{13} n_{eq} / cm².
- Hits in M-32:
 - Sample of ref. tracks: ~ 5×10^4 tracks in total $\rightarrow 3 \times 10^3$ tracks/measurement.
 - \cdot S/N (seed) > 5.
 - No cut on neighbouring pixels.
 - Information stored for 5x5 pixels = seed + 1st and 2nd crowns.

charge collection

pixels ranked with \searrow signal.

- Seed pixel: 40-50 % of total charge.
- Within 4 pixels: ~100 % of total charge.
- Confirms High Resistivity (limited thermal diffusion).

comparisons between different pixel designs

- PI: 20x20 μm², I sensing diode 10.9 μm² diode self-bias.
- P6: 20x20 μm², I sensing diode 10.9 μm²
 3T.
- P9: 20x20 μm², I sensing diode 10.9 μm²
 3T, deep P-well.
- L4_I: 20x40 μm², I sensing diode 9 μm², staggered diodes.
- L4_2: 20x40 µm², 2 interconnected diodes, staggered diodes.
- No parasitic charge collection with deep P-well.
- Elongated pixels → less charge collected (lower diode density, smaller diode).
 But still SNR = 22
 before irradiation and at T_{coolant} = 30 °C.

ionising irradiation

Lab tests with ⁵⁵Fe source.
 20x20 µm² pixels.
 Ionising dose: 3 MRad.

the particle crosses near the sensing diode → 100 % of the charge collected

non-ionising irradiation (1)

Lab. tests with ⁵⁵Fe source. $T_{coolant} = 15$ °C. fluences: $0.3 - 1.0 - 3.0 \times 10^{13} n_{eq} / cm^2$.

→ signal seems not to be degraded by traps induced by bulk damages after non ionising radiations.

 \rightarrow evolution with fluence seems due to a typical effect of leakage current. Noise increase modest up to fluences of $1 \times 10^{13} n_{eq} / cm^2$.

30.00

28.00

26.00

24.00

22.00

18.00

16.00

14.00

12.00

non-ionising irradiation (2)

• Beam test with 60 GeV π^{-} . $T_{coolant} = 30 \ ^{\circ}C.$ $20x20 \ \mu m^{2}$ pixels.

S/N ~ 32 before irradiation \rightarrow S/N ~ 26 after 1.0x10¹³ n_{eq} / cm².

combined I+NI irradiation (I)

PI: 20x20 µm² pixel diode self-bias

irradiation	S/N (MPV)		efficiency (%)	
	15 °C	30 °C	15 °C	30 °C
0 (reference)	35.1 ± 0.4	38 ± 4	99.97 ± 0.03	100 ± 1
I MRad + 10 ¹³ n _{eq} /cm ²	25.4 ± 0.3	20.3 ± 0.3	99.69 ± 0.12	99.61 ± 0.15

-> SNR > 20 after | MRad + $10^{13} n_{eq}/cm^2$ even at $T_{coolant} = 30$ °C.

SNR shape changes after irradiation - detection efficiency remains excellent (~ 100 %) !

combined I+NI irradiation (2)

summary

- Square 20x20 µm² pixels:
 - · Totality of the charge collected over 4 pixels.
 - Detection efficiency ~ 100 % even at 30 °C and after combined I+NI irradiation.
 - · Different charge collection performances observed if self-bias T or diode.
 - · Deep P-well does not parasite charge collection.
- Elongated 20x40 µm² pixels:
 - · Less charge collected and higher noise than square pixels.
 - But still detection efficiency \geq 99 % at 15 °C after combined I+NI irradiation,

~ 98 % at 30 °C after combined I+NI irradiation.

 \rightarrow very encouraging results.

next steps

"towards a rad-hard sensor with a read-out time ~ 1.5 μs "

- MIMOSA-32: validation of the 0.18 µm technology.
 - · Complete the data analysis of past beam tests (June, July and August): spatial resolution, ...
 - · Next beam test foreseen in November at CERN: other radiation doses, ...
 - · New submission of MIMOSA-32 in 0.18 µm in July: test of amplification.
- MIMOSA-22THR: validation of the optimised rolling shutter architecture.
 - Submission December 2012.
 - · 2 different chips:
 - translation of MIMOSA-22AHR (0.35 µm techno.) with end-of-column discrimination.
 - simultaneous 2-row encoding with 2 discriminators/column twice faster.
- SUZE-02: validation of the sparsification.
 - Submission Autumn 2012.
 - Sparsification for 2 and 4 // rows > data flow and power reduction.
- AROM-I (Accelerated Read-Out Mimosa): validation of the in-pixel discrimination.
 - Submission 2013.
 - Simultaneous 4-row encoding with in-pixel discrimination
 → 8 times faster.