
Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Updates of R&D activities on SuperB analysis framework

Marco Corvo

CNRS and INFN

September 20th 2012

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 1 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Outline

1 Brief review of past activities

2 A (temporary) change of strategy

3 Where we are now

4 Open issues

5 Conclusions

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 2 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

A concurrent framework

(The first slides are grabbed from our presentation given at NYU for
CHEP 12)
The current SuperB analysis frameworks share some features which
prevent parallelism

Written long time ago thus suffering from severe lack of modern
programming paradigms

Worst of all intrinsically serial

First step toward the parallelization of SuperB Framework is the analysis
of current code, mostly based on BaBar legacy code, specifically one of
the executables of Fast Simulation.
The analysis of a particular dataflow has a main goal:

Factorization of the workflow

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 3 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Measuring hidden parallelism

The starting point was a specific Fast Simulation executable whose data
flow includes 127 modules

The analysis of the workflow has been performed

For each module the analysis extracts:

The list of required input or data products needed by the module to
run
The list of provided output generated by the module
The event processing time

Basically the trick is to look inside the Event and dive into physics
data products to understand who provides or requires what

These lists are used to build an adjacency matrix, a means to
represent the connections among vertices of a graph

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 4 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Results (to be revised)

This analysis shows that the current code of Fast Simulation could benefit
from modules parallelization.

In particular, for this specific
case, we found that the tree has
ten levels, each with twelve
nodes on average

This clearly suggests that, on
average, twelve modules could
be scheduled in parallel

Num of modules 127
Graph Depth 10
Min Rank 1
Max Rank 54
Avg Rank 12

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 5 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Zoom in

These are snapshots of the complexity we have to deal with. A big effort
has been done to extract the dependencies of the modules, as the only
source of information are the data products that modules write into the
event, the data structure where physics results are stored

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 6 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Timing error

One of the results that made us confident to be able to improve
dramatically the performances of our framework was the amount of time
spent by this particular analysis into the ”parallelizable” set of modules

If the analysis were to spend 90% of the wall time into
”parallelizable” modules, then exploiting concurrency would result in
gaining a speed-up of (roughly) S = Twall

tmoduleX

The timer we had (BaBar legacy code) had a bug

This led us to change our approach to the problem, that is to try to
increase the number of events analyzed (move from module level to
event level parallelism)

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 7 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Moving to event parallelism

The first attempt was to exploit Intel R© Tbb parallel_for

This is the simplest approach as with minor changes in the main loop
we are able to inject more than one event into the analysis chain

The class parallel_for applies a so called ”functor”, the physics
module, to a range of objects, the events

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 8 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Integrate with module parallelism

The parallel_for approch allows only palallelism at the event level
(we inject more that one event in the analysis chain)

Our goal is to exploit also module level parallelism (allow modules to
run concurrently on the same event)

This is the approach that we want to pursue despite the initial bad
performances

Because it is a valid and general model that can improve even more the
performances

This was done using Tbb flow::graph objects where every module
in the analysis chain is mapped onto a graph node

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 9 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Module parallelism

Graph example

To map the modules of the analysis chain to
graph nodes, we analysed the event which is
the container where all physics products are
read and written

The result is a list of requirements and
products for each module that we use to build
a graph of dependencies

Major effort required to modify modules
according to Tbb schema as modules must be
implemented as functors

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 10 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Features of this work

In this work we introduced some features

Modules have been wrapped by a functor which calls the event

method on the event

Every module has been instrumented to extract two lists: one
contains the requirements for the module to operate, the second
contains the products of the module itself

A method has been added to the class Framework to build a Tbb
flow::graph object

The event has been made ”thread safe” substituting the list of
physics products with a Tbb concurrent_hash_map

A mechanism to limit the ”injection” of events into the graph has
been implemented

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 11 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Results I

Results with parallel for (HT off)

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 12 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Results II

Results with parallel for (HT on)

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 13 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Results III

Concurrency breakdown (HT off)

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 14 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 15 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Issues

There’s a intrinsic limit in Tbb flow::graph as regards the management
of nodes

The schema works so that a given module runs when all its
”required” products are available

If module A needs N products to run, we need to notify A when they
are all available

This is possible using a particular flow::graph node called
join_node

This node has a mechanism which forwards a message to its successors
only when all of its input ports have been filled
The issue with this node is that the number of input ports must be
declared in advance and not dinamically

The solution is to recursively reduce the graph combining join nodes
in couples

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 16 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Graph reduction

Graph reduction

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 17 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

A Tbb limit?

We encountered another problem on our way towards parallelism: a
deadlock which prevents us from injecting more than 8 events into
the graph

This problem rises as we lock a particular module
Locks are currently needed on certain modules to guarantee that only
a given event can use it

This happens because modules are instantiated once at graph creation
and we must avoid that two events access the same ”common blocks”
messing up the variables
Luckily this is true only for a limited number of modules, while for
others we modified things to have thread safeness (e.g. data locality)

The limit is equal to the number of threads that Tbb spawns to
perform calculations

I. e. we knock against this deadlock when we inject 9 events

Problem under investigation...

During our test we also saw what is likely to be a memory leak

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 18 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Short and mid term plans

We need to come to a full understanding of all dependencies among
modules

This is a good starting point, but there are a lot of analysis patterns
to consider, not to mention a full reconstruction framework

This exercise was helpful to understand also what modules can do
and what modules must NOT do to improve optimization

There’s room for improvements also in the generation part, trying to
limit (or at least factorize) the use of Common Blocks in Fortran code

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 19 / 19



Outline Where we were last time A (temporary) change of strategy Where we are now Conclusions

Conclusions

Our efforts so far have been rewarded as we shown the speedup
gained by event and (partial) module level parallelism

The (disclosed) parallel potential inside existing code is strategic

It optimizes resources usage and increases computing speed
Helps to better understand algorithms for future development

Issues are still under investigation, but we are confident to be able to
solve them

In the long term we will abandon the current SuperB framework for a
new one which is natively parallel and whose architecture will be
designed based on our experiences

Marco Corvo (CNRS and INFN) Updates of R&D activities on SuperB analysis frameworkSeptember 20th 2012 20 / 19


	Outline
	Outline

	Where we were last time
	The problem
	Step one

	A (temporary) change of strategy
	Results revised
	Event level parallelism

	Where we are now
	Current SuperB framework prototype
	Measures

	Conclusions
	Plans
	Conclusions


