

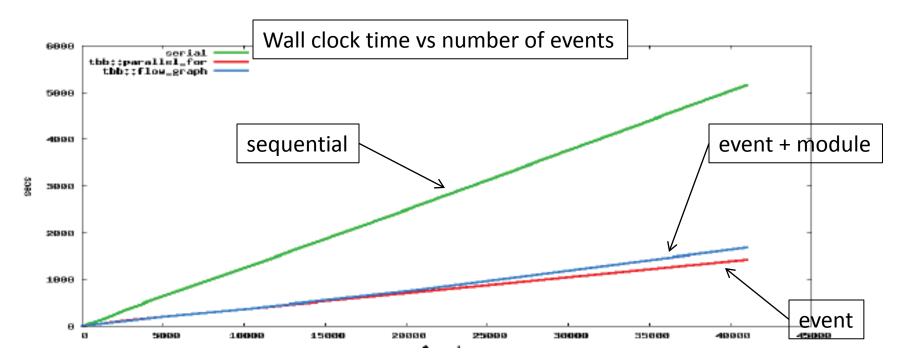


## Computing Summary

F. Bianchi Torino

V SuperB Collaboration Meeting Pisa, September 21st, 2012






#### Outline

- Lively parallel sessions!
  - R&D
  - Distributed Computing Tools
  - FullSim & Background
  - Computing section of Detector TDR
- My selection of presented material plus some comments
  - Look at the presentations in Indico for details

### R&D: Parallel Framework (1)

- M. Corvo has presented nice progresses.
- Test were made using the current FastSim Framework that is based on the BaBar code.
- Test both of event level and event plus module parallelism.



F. Bianchi

### R&D: Parallel Framework (2)

- We need to come to a full understanding of all dependencies among modules
- This is a good starting point, but there are a lot of analysis patterns to consider, not to mention a full reconstruction framework
- This exercise was helpful to understand also what modules can do and what modules must NOT do to improve optimization
- There's room for improvements also in the generation part, trying to limit (or at least factorize) the use of Common Blocks in Fortran code
- In the long term we will abandon the current framework for a new one which is natively parallel and whose architecture will be designed according to our experiences

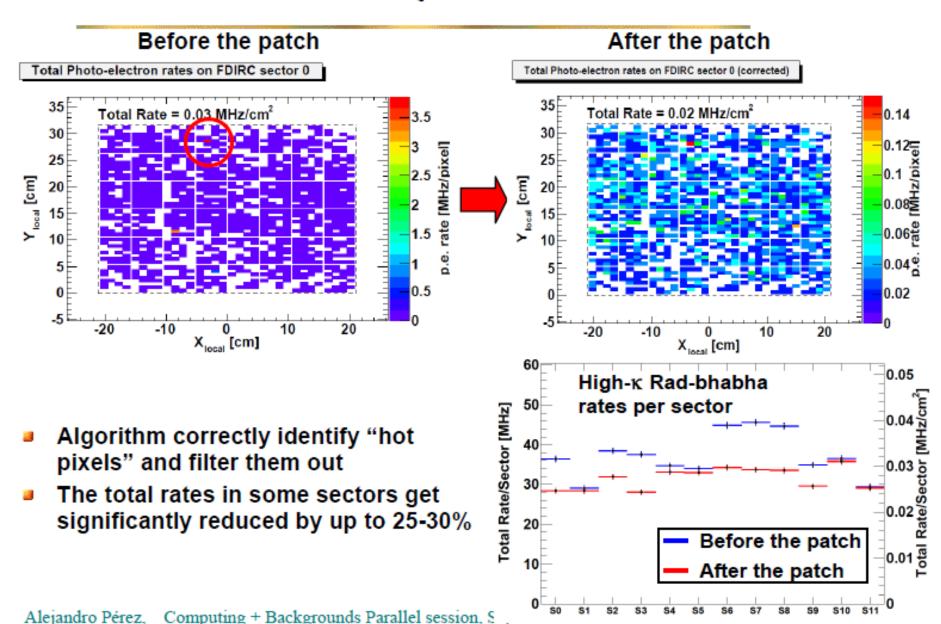
F. Bianchi

## R&D: Distributed Storage

- Storage system evaluation
  - HadoopFS on WAN: testbed on Bari and Napoli
- Data access framework library development
  - Data access optimization on local and WAN scenario
  - Mask the low level data access layer at the sites
  - Useful support from ROOT development team
- Mass data transfer system
  - FTS3 evaluation
  - PhEDEx evaluation process (standby)
- File catalog ng (dynamic LFC ng by EMI R&D, standby)

### DIRAC (1)

- DIRAC (Distributed Infrastructure with Remote Agent Control) is a Grid resource management tool.
  - Goal: setup and configure a Dirac system to fulfil the SuperB requirements
  - General work plan:
    - Simulation production use case (in progress)
    - Workload Monitor system
    - Analysis use case integrated with Ganga system
    - Mass data transfer system


### DIRAC (2)

- Present goal: manage all aspects related to Simulation Production (FastSim and FullSim) via DIRAC
  - User management (role and permissions)
  - Site Management per Session
  - Production creation and monitoring
  - Requests creation and monitoring
  - Bunch jobs submission and monitoring
  - DIRAC need to interact with Bookeeping Database (SBK5)
- Test to launch Severus (python wrapper for SuperB simulation production) via DIRAC have been successfully performed
- Very productive interactions with the DIRAC development team

## FullSim & Background

- Summer production was a success
  - A very complete set of background samples have been produced
    - Rad-bhabha (low and high k)
    - Pairs
    - Touschek and BeamGas (HER/LER)
    - Synchrotron Radiation (HER/LER)
  - Several improvement in detector and B field model
- Production was affected by a bug on optical photons in FDIRC
  - Luckily was recoverable offline
  - Need to improve our QA protocol before starting production
  - More advance planning of production is needed
- Good stress test of new distributed production system
  - Transfer of large (>3 GeV) files over the Grid failed.

#### The patch in action



## Next productions

- Currently we are exploiting resources on the Grid for central production(s).
  - But output is sent back to CNAF and analyzed there.
- We should start to use resources on the Grid also for analysis.
- We have a Ganga based tool to submit analysis job on the Grid.
  - It has been tested by few volunteers
  - Should become of general use sometime early next year.
  - Our plan is to offer a tutorial at the first 2013 meeting and ask people to use it for their analysis soon after.

F. Bianchi

## TDR Writing Recommendation

- Please remember that the repository is case sensitive.
  - The files "myfile.pdf" and "myfile.PDF" are different files.
- Please avoid committing to the repository a "dtdr.tex" file with all subsystems (with the exclusion of yours) commented out.
- Please resolve all conflicts before committing the text to the repository
  - Do a "svn update"
  - Resolve all conflicts by editing the affected files
  - Finally do the "svn commit"
- Please avoid lines with >1024 characters
- Check with the "svn stat" command
  - Files marked with a "c" have conflicts
  - Files marked with a "?" are missing

# Computing Section of DTDR

#### Status

- All material is there
  - Only final summary is missing

- More work by the computing group to improve wording is needed.
  - Plan is to complete this step in the next couple of weeks

| 14 Software and Comp | uting                                               | 339       |
|----------------------|-----------------------------------------------------|-----------|
| 14.1 Computing Ove   | rview F.Bianchi 2 pages                             | <br>339   |
| 14.2 Tools to suppor | t detector studies F.Bianchi 1 pages                | <br>339   |
| 14.2.1 Full Sim      |                                                     |           |
| 14.2.1.1             | Bruno: the SuperB full simulation software          | <br>340   |
|                      | Geometry description                                |           |
| 14.2.1.3             | Simulation input: Event generators                  | <br>340   |
| 14.2.1.4             | Simulation output: Hits and MonteCarlo Truth        | <br>. 341 |
| 14.2.1.5             |                                                     |           |
| 14.2.1.6             | Staged simulation                                   |           |
|                      | Interplay with fast simulation                      |           |
|                      | Long term evolution of the full simulation software |           |
| 14.2.2 Fast Sin      | •                                                   |           |
| 14.2.2.1             | Event generation                                    |           |
|                      | Detector description                                |           |
|                      | Interaction of particles with matter                |           |
|                      | Detector response                                   |           |
|                      | Reconstruction                                      |           |
| 14.2.2.6             |                                                     |           |
| 14.2.2.7             | Analysis tools                                      |           |
| 14.2.2.8             | 3                                                   |           |
|                      |                                                     |           |

|        | 17.2.2.0  | DIHIDIAGOR VARIDAGIOR ARIO DESCUEDO                                 | ajen i |
|--------|-----------|---------------------------------------------------------------------|--------|
| 14.2.3 | Distribut | ted computing tools G. Donvito - A. Fella - E. Luppi - S. Pardi L.  |        |
|        | Tomasse   | tti 10 pages                                                        | 347    |
|        | 14.2.3.1  | Distributed resources                                               | 348    |
|        | 14.2.3.2  | Distributed systems design: a bird's-eye view                       | 349    |
|        | 14.2.3.3  | The production system                                               | 349    |
|        | 14.2.3.4  | The data analysis system prototype                                  | 351    |
|        | 14.2.3.5  | The bookkeepieng and data placement database                        | 352    |
| 14.2.4 | Collabor  | ative tools M. Corvo - A. Gianoli - S. Longo - R. Stroili 2 pages . | 353    |
|        | 14.2.4.1  | Overview                                                            | 353    |
|        | 14.2.4.2  | Authorization                                                       | 353    |
|        | 14.2.4.3  | Portal System                                                       | 353    |
|        | 14.2.4.4  | Document repository                                                 | 353    |
|        | 14.2.4.5  | Documentation                                                       | 354    |
|        | 14.2.4.6  | Code repository                                                     | 354    |
|        |           | Code packaging and distribution                                     |        |

| 14.3 | Compt                            | iting mod | lel outline F. Bianchi - | A. Fella - C   | C. Gra         | andi - | S. Lu        | iitz – | E. Lu | ıppi - |       |
|------|----------------------------------|-----------|--------------------------|----------------|----------------|--------|--------------|--------|-------|--------|-------|
|      | S. Pardi - L. Tomassetti 6 pages |           |                          |                |                |        |              |        | . 356 |        |       |
|      | 14.3.1                           | Data pro  | oceasing                 |                |                |        |              |        |       |        | . 356 |
|      | 14.3.2                           | Resource  | estimate                 | F.Bianchi      | - <b>S</b> . I | Luitz  | 4 pag        | es .   |       |        | . 357 |
|      | 14.3.3                           | Computi   | ing Infrastructure       | F.Bianchi -    | - S. L         | uitz - | S. Pa        | rdi 4  | pages | i      | . 357 |
| 14.4 | R & D                            | program   | M. Corvo - G. Dony       | rito - A. Fell | la - F         | . Giac | omini        | - S.   | Longo | o - S. |       |
|      | Pardi 8                          | Spages .  |                          |                |                |        |              |        |       |        | . 358 |
|      | 14.4.1                           | R& D or   | parallelization          |                |                |        |              |        |       |        | . 358 |
|      | 14.4.2                           | GPU R&    | z D                      |                |                |        |              |        |       |        | . 359 |
|      | 14.4.3                           | Framewo   | ork R & D                |                |                |        |              |        |       |        | . 360 |
|      | 14.4.4                           | DIRAC     | framework evaluation .   |                |                |        |              |        |       |        | . 362 |
|      |                                  | 14.4.4.1  | Pilot jobs model         |                |                |        |              |        |       |        | . 363 |
|      |                                  | 14.4.4.2  | Dirac data managemen     | <b>t</b>       |                |        |              |        |       |        | . 363 |
|      |                                  | 14.4.4.3  | DIRAC API                |                |                |        |              |        |       |        | . 364 |
|      |                                  | 14.4.4.4  | User Management          |                |                |        |              |        |       |        | . 364 |
|      |                                  | 14.4.4.5  | Tested Use Cases         |                |                |        |              |        |       |        | . 364 |
|      |                                  | 14.4.4.6  | SuperBDIRAC module       |                |                |        |              |        |       |        | . 364 |
|      |                                  | 14.4.4.7  | Building up a DIRAC      | Infrastructu   | re for         | Super  | r <b>B</b> . |        |       |        | . 364 |
|      |                                  | 14.4.4.8  | Future Works             |                |                |        |              |        |       |        | . 365 |
|      | 14.4.5                           |           | nagement and distribute  |                |                |        |              |        |       |        |       |
|      |                                  |           | WAN data access          |                |                |        |              |        |       |        |       |
|      |                                  | 14.4.5.2  | Data access library      |                |                |        |              |        |       |        | . 366 |
|      |                                  |           | File Transfer Service ev |                |                |        |              |        |       |        |       |
|      |                                  |           | Dynamic file catalogue   |                |                |        |              |        |       |        |       |
|      |                                  |           | Storage system evaluati  |                |                |        |              |        |       |        |       |
| 14.5 | Summa                            | ary       | F                        | Bianchi 1      | pages          |        |              |        |       |        | . 367 |

#### Conclusions

- The computing group is supporting the collaboration by providing:
  - Collaborative Tools
  - Physics Tools: FastSim, etc.
  - FullSim
  - Production Tools
  - Bookkeeping Tools
- There is an active R&D program aimed at the design of the computing model.
- The activities funded under the Pon ReCaS are an important step forward into building the computing infrastructure.
- A severe lack of manpower is affecting us.
- Come and join the fun!