

SVT-Status

5th SuperB Collaboration Meeting Pisa, Sept - 2012

Studies completed for TDR since Elba
 Summary from SVT parallel sessions
 TDR status

INFN

Giuliana Rizzo Universita' & INFN Pisa

SVT –5th SuperB Collaboration Meeting Pisa Sept - 2012

G. Rizzo

Hit time resolution & back. occupancy

Some significant progress during the summer useful to complete TDR:

- 1. New/more reliable simulation of the hit time resolution to define time window cut for reconstruction/offline occupancy
- **L.Ratti PV** Now include noise effects and sim. results are able to reproduce time resolutions achieved in BaBar data.
 - With present background simulation and new time window cut SuperB average offline cluster occupancy ~ 2% (x5 safety included) only 2-3 times higher than average BaBar occu.
 - Studies on BaBar data in high background conditions (LI cluster occup. up to 5%) used to evaluate hit-to-track efficiency in SuperB : 95% with 3% cluster occu!

N. Neri (MI) I. Ripp-Baudot (IPHC Strasbourg)

-	Layer	View	Shaping time	Offline time window (+/- 5x NEW time resolution) ns	offline cluster occupanc y (x5 included)
	0	1	25	100	0.018
	0	2	25	100	0.018
	1	phi	75	110	0.016
	1	z	75	110	0.016
	2	phi	100	120	0.015
	2	z	100	120	0.017
	3	phi	150	150	0.030
	3	z	150	150	0.015
	4	phi	500	500	0.027
	4	z	500	500	0.022
	5	phi	750	550	0.023
	5	z	750	550	0.017

Fastsim Studies completed N.Neri MI

3. Fastim performance comparison for striplets and pixel in Layer0 completed

- ➤ As expected pixel performance more robust in high background (pixel occup. 200 times smaller than striplets)→ main motivation for pixel upgrade for full luminosity.
 - With x5 background, sensitivity to S reduced by 15% with striplets, while only 3% degradation seen with pixel with same material budget assumed.
- > Thinner pixel options can further improve S sensitivity even with nominal background

FE chip S/N update

- 4. Higher neutron fluence found in SVT (bug fix in July) and effect on leakage current and FE noise reevaluated
 - > S/N marginal (<10) in L4-5 with 7.5 yrs x5 safety
 - > A few knobs to improve the situation.
 - 1. Reduce ambient temperature ($T=12^{\circ}C$, in this table)
 - 2. Reduce shaping time.

Need to investigate effect of some neutron shield in the hall

S/N ratio vs t_P at 1 MIP

_	Layer	View	Shaping time	S/N at the start of data taking	S/N in 75 ab-1	S/N in 75 ab-1 x5 bkg
	0	1	25	17	17	16
	0	2	25	17	17	16
	1	phi	75	21	20	16
	1	z	75	32	27	18
	2	phi	100	22	20	16
	2	z	100	34	27	18
	3	phi	150	27	21	14
	3	z	150	34	27	16
	4	phi	500	22	17	10
	4	z	500	29	19	11
	5	phi	750	22	14	8
	5	z	750	30	18	10

Simulation performed at T=14 °C

SVT Background Update

Small contribution from new RadBhabha L0 lower rate due to different radius (Jun12, Sep12)

LAYER S	2photor	IS			Bbbren	n	Tousch HER	lek	Tousch LER	lek	Beamg	3eamgasHER Beamgas LER		Bbbrem Low∆E	
MHz/ cm ²	Jan12	May12	Jun12	Sep12	May12	Sep12	May12	Sep12	May12	Sep12	May12	Sep12	May12	Sep12	May12
L0 phi	29.4	30.1	18.7	18.8	0.83	0.54	0.62	0.40	1.70	1.39	0.47	0.37	1.48	1.12	0.013
L0 z	37.2	38.1	20.2	20.3	1.58	0.80	1.94	1.23	4.73	3.7	1.37	1.04	4.27	3.03	0.021
L1 phi	1.56	1.60	1.71	1.66	0.13	0.13	0.19	0.21	0.67	0.93	0.16	0.2	0.58	0.77	0.027
L1 z	0.74	0.76	0.80	0.79	0.08	0.086	0.20	0.23	0.69	0.98	0.18	0.22	0.61	0.80	0.020
L2 phi	0.78	0.81	0.94	0.82	0.079	0.086	0.135	0.13	0.51	0.66	0.12	0.14	0.43	0.56	0.021
L2 z	0.40	0.41	0.49	0.41	0.056	0.056	0.15	0.14	0.55	0.69	0.13	0.14	0.47	0.58	0.018
L3 phi	0.14	0.15	0.26	0.14	0.049	0.023	0.035	0.03	0.165	0.16	0.029	0.028	0.14	0.14	0.009
L3 z	0.13	0.14	0.24	0.11	0.055	0.023	0.057	0.05	0.255	0.25	0.048	0.046	0.21	0.22	0.009
L4 phi	0.022	0.027	0.031	0.023	0.013	0.006	0.0042	0.004	0.014	0.018	0.0035	0.003	0.012	0.016	0.002
L4 z	0.014	0.019	0.019	0.016	0.0081	0.005	0.0031	0.003	0.010	0.014	0.0026	0.003	0.0087	0.012	0.0017
L5 phi	0.012	0.016	0.015	0.014	0.0062	0.005	0.0020	0.002	0.0070	0.011	0.0015	0.002	0.0056	0.009	0.0017
L5 z	0.0082	0.011	0.010	0.010	0.0039	0.003	0.0015	0.002	0.0054	0.008	0.0012	0.002	0.0044	0.007	0.0012

- New rad Bhabha source doesn't affect rates in SVT but increases neutron fluence (+30%), already critical in external layers.
- All results for TDR studie still valid (stick with the old numbers in TDR) with the known weakness of S/N in L4-5 with x5 safety applied.

SVT –5th SuperB Collaboration Meeting Pisa Sept - 2012

G. Rizzo

6

Layer0 Fanout and Peripheral electronics

> Update on the production status for Layer0 pixel bus and Striplets fanout @ CERN

- > Very slow turn around time with CERN workshop.
- > Important to investigate again other possible supply!
- > Update on the status of components order for peripheral electronics prototypes
- Mauro is very happy if SuperB goes to 40 MHz for the reference clock (possible use of GBT for our links become more realistic).
- > First version of corresponding TDR sections promised in the next few days!

SVT Mechanics Update

- F. Bosi Pl
- 1. TDR writing & prepare for module & beam pipe prototype construction.
- 2. Started to work actively on the problem of reducing the ambient temperature on sensor, to reduce the effect of leakage current increase (increased neutron fluence seen in background simulation in July)
 - thermal simulation of various components started
 - dry air pipes on the SVT support cones under evaluation

- 3. Plan to build a mock up of the SVT/IR to reproduce and measure the mech. stress and deformation induced on the SVT modules by the movement of the W conical shield due to movements/misalignment during installation (demounting) operation
 - I. Pisa-QMUL-Milano for the different components of the SVT mechanics

R&D on pixel: APSEL MAPS

- INMAPS MAPS with high resistivity epi layer under test:
 - Better charge collection evident with high resistivity
- > Irradiation with neutrons: 4 steps up to 1x10^14 n/cm2
- > Chips tested in Pisa/PV (55 Fe, 90 Sr, Laser) \rightarrow significant charge collection deterioration even at low fluence
- > Other group observed better rad resistance (Strasbourg)
- > Need to optimize the sensor design with the new process:

> Collection diode dimension, diode bias voltage ...

INMAPS CMOS process with 4 wells & high resistivity to improve charge collection efficiency and radiation resistance

Testbeam Preparation

Test beam 2012: which DUTs?

- Lower THR (peace-keeper
- 3D-TC
- DIASuperPix

S. Bettarini (PI)

- Getting ready for the Nov. 2012 Testbeam with many pixel devices
- Discussion on priority list \succ since we have only 5 days of beam

Work in Lab. to be done

- Characterization: PISA
 - With TLA:
 - 3 chips INMAPS 32x32 high- Ω (Pi)
 - 3 chips 3D-TC (Pi)
 - 2 chips DIASuperpix0 (Pv/Lecce)
 - Superpix0:

THR correction tests with chips TB2011 (Pi)

- DAQ(Bologna): **Bologna**
 - Writing the firmware for INMAPS 32x32

(debug possible:apsel4D board + inmaps chip)

- IDEM for chip 3D-TC
- Understand if the peace-keeper can work with lower THRs w.r.t. TB 2011

To be set a priority list! (available only 5 days of beam)

SVT –5th SuperB Collaboration Meeting Pisa Sept - 2012

R&D on pixeising igradiation (1)g

180 nm quadruple well CMOS process, high res,

Encouraging results on irradiation test with

neutrons with MIMOSA 32 MAPS:

rolling shutter (time frame $\sim 30 \ \mu s$)

I. Ripp-Baudot (IPHC Strasbourg)

Very useful exchange of information on the technology among groups

- The "Italian" MAPS pixels have already the right architecture for Layer0 (in pixel sparsification & small timestamp 100 ns), but need to optimize the sensor design to benefit of the improved radiation resistance of the new process....
- MIMOSA pixels have a better charge collection but still need to work on the evolution of their architecture to get the right specs for SuperB/ALICE:

Detailed plan

next steps

"towards a rad-hard sensor with a read-out time ~ 1.5 μs "

• MIMOSA-32: validation of the 0.18 µm technology.

Complete the data analysis of past beam tests (June, July and August): spatial resolution, ...
 Next beam test foreseen in November at CERN: other radiation doses, ...
 New submission of MIMOSA-32 in 0.18 µm in July: test of amplification.

- MIMOSA-22THR: validation of the optimised rolling shutter architecture.
 - Submission December 2012.
 - · 2 different chips:
 - translation of MIMOSA-22AHR (0.35 μm techno.) with end-of-column discrimination. - simultaneous 2-row encoding with 2 discriminators/column → twice faster.
- SUZE-02: validation of the sparsification.
 Submission Autumn 2012.
- · Sparsification for 2 and 4 // rows → data flow and power reduction.
- AROM-1 (Accelerated Read-Out Mimosa): validation of the in-pixel discrimination.
 Submission 2013.
- \cdot Simultaneous 4-row encoding with in-pixel discrimination \rightarrow 8 times faster.

SVT –5th SuperB Collaboration Meeting Pisa Sept - 2012

Update of Activities in UK

Progress of the Arachnid Collaboration

- MAPS R&D with INMAPS process (pioneered by RAL) the with target application ALICE/ SuperB
- characterization of their INMAPS chip Cherw I2e-) & preparation for testbeam in Novembe Arachul

Mechanics:

Getting ready to build prototypes of support cones & space frame to be integrated with the mockup of the SVT & IR we plan to build in ltaly in the next 12-18 months to test the stability of the SVT assembly and quick dim ounting procedure

JVI – J JuperB Collabo

Reference pixel results

- There is a clear noise
 peak
- Fe55 spectrum shows a sharp cut-off at ~275(ADC counts)
- Consistent with noise and gain from PTC

G. Rizzo

SVT – TDR STATUS

]	LSilio	con-Vertex-Tracker	-1
Completed	1.1	OverviewG.Rizzo - 12 pages	1
compreteu		1.1.1 SVT and Layer0	1
		1.1.2 SVT Requirements	3
		1.1.2.1 Resolution \ldots	3
		1.1.2.2 Acceptance \ldots	3
		1.1.2.3 Efficiency	5
		1.1.2.4 Background & Radiation Tolerance	5
		1.1.2.5 Reliability \ldots	6
		1.1.3 Baseline Detector Concept	6
		1.1.3.1 Technology \ldots	6
		1.1.3.2 Layout \ldots	6
		1.1.3.3 Electronic Readout	8
		1.1.3.4 Module design and Mechanical Support	10
		1.1.4 Layer0 Pixel Upgrade	11
		1.1.4.1 Motivations \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	11
		1.1.4.2 Technology Options for Layer0 pixel upgrade	12
		1.1.4.3 Pixel Module & Material Budget	14
		1.1.5 R&D Main Activities	15
To be written	1.2	BackgroundsR.Cenci - 4 pages	15
		1.2.1 Pair production	16
		1.2.2 Radiative Bhabha	16
		1.2.3 Touschek	16
		1.2.4 Beam Gas	16
		1.2.5 Other sources	16
Completed	1.3	Detector Performance StudiesN.Neri - 6 pages	16
		1.3.1 Introduction	16
		1.3.2 The SVT layout	16
		1.3.3 Impact of Layer0 on detector performance	17
		1.3.4 Tracking performance	20
		1.3.5 Impact of machine background on tracking performance	20
		1.3.6 Sensitivity studies for time-dependent analyses	22
		1.3.7 Performance with Layer0 pixel detectors	23
		1.3.8 Particle identification with dE/dx	24

SVT – TDR STATUS

	Almost	1.4	Silicor	n Sensors		L. B	osisio - 8 pages		 	24
	Completed		1.4.1	Require	ments		· · · · · · · · · · · ·		 	24
	compreter	1	1.4.2	Sensor d	lesign and techn	ology	· · · · · · · · · · · ·		 	25
			1.4.3	Wafer la	yout and quant	ities \ldots	· · · · · · · · · · · · · · · · · · ·		 	28
			1.4.4	Prototy	oing and tests		· · · · · · · · · · · · · · · · · · ·		 	28
			1.4.5	z-side st	rip connection o	\mathbf{p} ptions \mathbf{r}			 	28
		1.5	Fanou	t Circuits		L.Vitale	- M.Prest2+2 page	S	 	29
			1.5.1	Fanouts	for layer0		· · · · · · · · · · · · · · · · · · ·		 	30
				1.5.1.1	Requirements				 	30
				1.5.1.2	Technology .				 	30
				1.5.1.3	Design		· · · · · · · · · · · · · · · · · · ·		 	30
				1.5.1.4	Prototyping an	nd tests			 	30
			1.5.2	Fanouts	for outer layers				 	30
				1.5.2.1	Requirements				 	30
				1.5.2.2	Material and p	production tech	nnique		 	30
				1.5.2.3	Design		· · · · · · · · · · · ·		 	30
				1.5.2.4	Tests and prot	otyping	· · · · · · · · · · · ·		 	30
		1.6	Electr	onics Rea	dout		28 pages		 	31
	Completed		1.6.1	Readout	chips		V.Re - 10		 	32
				1.6.1.1	Electronic Rea	dout for Strip	and Striplet Detec	tors	 	32
			1.6.2	Readout	chips requirem	ents	· · · · · · · · · · · ·		 	32
			1.6.3	Readout	Chip Implemen	ntation	· · · · · · · · · · · ·		 	35
			1.6.4	R&D for	strip readout o	$chips \dots \dots$	· · · · · · · · · · · ·		 	36
		ا ר	1.6.5	Hybrid I	Design		$\operatorname{M.Citterio}$ - 10 .		 	38
V0	in few days		1.6.6	Data Tr	ansmission		M.Citterio - 10		 	38
		- L	1.6.7	Power S	upply		- 2		 	38
							· · · · · · · · · · · · · · · · · · ·			

Completed	1.7	Mecha	anical Sup	port and Assembly	S.B	Bettarini/F.B	osi - 14 page	5	38
		1.7.1	I.R. Cor	straint					38
		1.7.2	Module	Assembly					39
		-1.7.3-	Detecto	Assembly and Insta	Hation			·····	-40-
			1.7.3.1	SVT Half Detector	Assembly				40
			1.7.3.2	Mount L0 on the Be	e-pipe and L	1-5 on the V	V Shielding .		41
			1.7.3.3	Installation of Com	plete Assemb	oly into the S	uperB Detec	tor	41
			1.7.3.4	Quick Demounting					41
		1.7.4	Detector	Placement and Surv	<i>r</i> ey				43
			1.7.4.1	Placement accuracy	••••••				43
			1.7.4.2	Survey with tracks					43
		1.7.5	Detector	Monitoring					43
			1.7.5.1	Position Monitoring	$System \dots$				43
			1.7.5.2	Radiation Monitorin	$ag \ldots \ldots$				43
		1.7.6	R&D Pi	ogram					43
			1.7.6.1	Cables					43
			1.7.6.2	hybrid					43
			1.7.6.3	Inner layer sextant					43
			1.7.6.4	Arch modules					43
			1.7.6.5	Cones and space fra	.me				43
	1.0	т (1.7.6.6	Full-scale model of	IR				43
mpleted	1.8	Layer	U Upgrad	e Options	L.I	Ratti - 10 pa	ges		43
		1.8.1	Technol	ogy options					43
			1.8.1.1	Hybrid pixels					43
			1.8.1.2	Deep N-well CMOS	monolithic s	sensors			45
		100	1.8.1.3	Monolithic pixels in	CMOS quad	druple well te	echnology		46
		1.8.2	Overvie	w of the R&D activit	y				47
			1.8.2.1	Front-end electronic	cs for hybrid	ı pıxels in p	lanar and 31	J CMOS	477
			1000	technology					47
			1.8.2.2	The Apsel DNW M	APS series .				48
		100	1.8.2.3	The Apsel4well qua	druple well n	nonolithic sei	1 sor \dots \dots		52
han and the second second		1.8.3	Radiatio	on tolerance					53
be written	1.9	Servic	es, Utiliti	es and E.S. & H issue	es	- 4]	pages		56 56
		1.9.1	Service	and Utilities					56
		-1.9.2-	ES&H-1	ssue					- 56-

SVT – TDR final phase

- > Internal revision of the text started on completed sections (~ 75%)
 - Mechanics/Silicon sensor chapters almost complete
 - > Peripheral electronics & fanout layer0 first version promised in a few days
 - Background chapter still to be written (only 2-3 pages + table)
- Final "chapter reader" for SVT (A. Bevan) can hopefully start to work in I-2 weeks.
- > Need to include budget and schedule for SVT construction.
- Budget used for white paper should be revised
 - Need to include costing for quick demounting
 - Refine manpower/cost for technicians and eng. for construction (seems underestimated for some phases)
- Preliminary schedule built looking at BaBar experience (assuming right manpower available) + some guess on Layer0 needs and relaxing the final phase of construction w.r.t BaBar.
 - > First draft of the schedule revised during the parallel sessions

Assumption for schedule

- Assumed enough manpower available and 2 main labs (as in BaBar):
 - Pisa+UCSB for modules
 - LBL+(Pisa) SVT Mechanics
 - Pisa+Trieste Silicon sensors
 - Pisa+Torino+Ferrara Jigs
 - LBL+PV+MI On detector electronics
 - UCSC Off Det. Electronics

Preliminary SVT – Construction schedule

Item (months) Construction for Baseline	2012 TDR	2013 Design & Protot.	2014	2015	2016	2017
Installation (3???)						+
Final Assembly (6)					+	→
Module Ass. (Arch- SextantStriplets)(4)					\$	
DFA+HDI Ass.(4)					\$	
HDI (6+8)					•	
Chip Production (6) Cannot start before 2015				+		
DFA (18)						
Fanout (15)				→		
Silicon Sensors (18)						
Off Det Electr. (24)						
Transit. Cards (12) Can start beginning 2015 (GBT available)				←		
Mechanics Support Structure start after 1 st prototype (18-24) Module & Jigs checked(18)			+			

Backup

Using BaBar SVT Construction Experience + Layer0 needs + more relaxed final phase

	BABAR			0		
	Experience		comments	SuperB	end date	comments
	months	date		months		
Si sensor design	12	95		12		
Si sensor production test	18	mid 96- end 97		18		
DFA	12-18 months	beg full speed july 97 end 98		18		also L0
chips available		mid 98			mid 2015	prototyping ends in 2 yrs from now. + 6 months production
HDI loading	4	aug 98-nov 98	too hard in 4 months	12 m with 6m chips loading starting when chips avaliable	end 2015	include L0
DFA+HDI L1-2-3	3	sept - nov 98	in UCSB	module assembly in 2 places 3 month for DFA+HDI + 3 months for Module assembly 6 months total	Mar-16	
DFA+HDI L4-5	3	oct-dic 98	in PISA at the same time DFA_HDI bonding/testing and Arch construction (2 teams too hard!!)	module assembly in 2 places 3 month for DFA+HDI + 3 months for Module assembly 6 months total	Mar-16	
Module 1-2-3	2	oc-nov 98	in UCSB	module assembly in 2 places 3 month for DFA+HDI + 3 months for Module assembly 6 months total	mid 2016	
Arch 4-5	3	nov98 jan99	in PISA at the same time DFA_HDI bonding/testing and Arch construction (2 teams too hard!!)	module assembly in 2 places 3 month for DFA+HDI + 3 months for Module assembly 6 months total	mid 2016	
installation on support cones	3	jan-march 99		6 months considering L0 too	end 2016	
installation of SVT	3	march-june 99		3	Mar-17	
20		SuperB	Collab. Meeting	Pisa – Sept 2012		G. R

SuperB Collab. Meeting Pisa – Sept 2012

UPDATED looking more carefully at BaBar schedule and including Layer0 (OLD)

Item (months) Construction for Baseline (striplets +SVT)	2012 TDR	2013 Design & Protot.	2014	2015	2016	2017 Commissio ning in SuperB
Installation (3)						+
Final Assembly (6)					ļ	
Module Ass. (Arch- SextantStriplets)(3)					\$	
DFA+HDI Ass.(3)					\$	
HDI (12)				•		
Chip Production (6) Cannot start before 2015				\longleftrightarrow		
DFA (18)			-			
Fanout (15)			•	→		
Silicon Sensors (18)						
Off Det Electr. (24)			•			
Transit. Cards (15)			4			
Mechanics Support Structure (18-24) Module & Jigs (18)			↓			