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“Intrinsic” energy resolution
• Before we apply energy smearing with a resolution 

function, there are already fluctuations in shower 
energy deposition.

✦ Shower leaks at the back
✦ Randomized shower starting point
✦ Polar angle dependence in EMC radiation lengths
✦ Gaps between crystals
✦ Approximation in projecting crystal front surface geometry 

to a grid when calculating energy fraction in each one.
✦ etc.

• This makes modeling resolution function more 
difficult. Smearing function is not the same as 
measured resolution.
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“Intrinsic” energy resolution
• V0.3.2 out-of-the-box

• Significant fraction of real energy resolution.

• Strange transition of mean values around 600 MeV.
✦ also makes energy calibration difficult.
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Polar angle dependence
• In the transition region, the resolution shows double 

peaks, very sensitive to total radiation length.
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Remove reconstruction effects
• (most of them anyway)

• Collect all energy deposition by SimTrack for a given 
cluster.
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Explanation
• We use a gamma distribution to 

model shower. Energy in a layer is a 
slice of the integral.

• When remaining energy falls below 
a critical energy Ec, all remaining 
energy is deposited.

• For a low energy photon, when it 
reaches the last layer, the remaining 
energy is small (< Ec) so ~100% 
energy is deposited.

• For a high energy photon, at the last 
layer, the energy is still high, so 
only a slice of the tail is deposited; a 
few % loss.

• In between energy (~600 MeV), 
both happen, sensitive to radiation 
length.
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Figure 27.18: An EGS4 simulation of a 30 GeV electron-induced cascade in iron.
The histogram shows fractional energy deposition per radiation length, and the
curve is a gamma-function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes at X0/2 intervals
(scale on right) and the squares the number of photons with E ≥ 1.5 MeV crossing
the planes (scaled down to have same area as the electron distribution).

which is in general less than the total track length T . Practical devices are sensitive to
electrons with energy above some detection threshold Ed, and Td = T F (Ed/Ec). An
analytic form for F (Ed/Ec) obtained by Rossi [4] is given by Fabjan [53]; see also
Amaldi [54].

The mean longitudinal profile of the energy deposition in an electromagnetic cascade
is reasonably well described by a gamma distribution [55]:

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(27.31)

The maximum tmax occurs at (a− 1)/b. We have made fits to shower profiles in elements
ranging from carbon to uranium, at energies from 1 GeV to 100 GeV. The energy
deposition profiles are well described by Eq. (27.31) with

tmax = (a − 1)/b = 1.0 × (ln y + Cj) , j = e, γ , (27.32)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for photon-induced
cascades. To use Eq. (27.31), one finds (a − 1)/b from Eq. (27.32) and Eq. (27.30), then
finds a either by assuming b ≈ 0.5 or by finding a more accurate value from Fig. 27.19.
The results are very similar for the electron number profiles, but there is some dependence
on the atomic number of the medium. A similar form for the electron number maximum
was obtained by Rossi in the context of his “Approximation B,” [4] (see Fabjan’s review
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cascades. To use Eq. (27.31), one finds (a − 1)/b from Eq. (27.32) and Eq. (27.30), then
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Fix
• Modify the function after 17 X0, so that it linearly goes 

to zero at 20 Xo. Don’t dump the remaining energy if 
it is less than Ec.
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Before After

Single photon, 0.1−3.0 GeV



SuperB Collaboration Meeting, 2012/09/19 Chih-hsiang Cheng

Summary
• Fixed an ugly feature in EM shower longitudinal 

profile.

• The “intrinsic” energy resolution is improved.
✦ cannot be completely eliminated due to the complex 

nature of FastSim.

• ~1% is still significant especially for high energy 
photons, but it should be easier to model or correct 
the resolution if we want to better reproduce the 
resolution function we put in.
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