LNF Test Setup

R. de Sangro

CR Test Stand @ LNF

- The setup has been upgraded to:
 - exploit (almost) the full chamber length
 - select momentum region close to minimum ionizing cosmic muons

Trigger counters

Counter to veto high-momentum muons

 Counters are read-out on both sides for measurement of longitudinal coordinate

Upgrade Goals

- I. Increase trigger rate
- 2. Obtain a measurement of the sensitivity of the cluster counting technique
 - Measure the separation of dN_{cl}/dx for momentum selected samples
 - "highP" $p \ge 500 \text{ MeV/c} \rightarrow$ "high" dE/dx
 - "lowP" p<500 MeV/c \rightarrow "low" dE/dx
 - "nice to be able to do that even without a test beam"

Energy Loss

Beam

G4 Simulation

- Study setup performance
- Possibly optimize geometry and/or layout and/or absorbers' thickness
- Develop a tool of more general use (e.g. test beam)

SCm0 and SCm1 used to limit θ range to $\pm 30^{\circ}$ around $\theta = 90^{\circ}$

G4 Simulated Data: check method

Flat energy spectrum generated

"lowP" with SC2 "highP" without SC2

Missing the Iron absorber! \Rightarrow need ϕ , θ fiducial cuts

With wide Iron absorber and SCI centered

Other improvements may be:

- Adding a third absorber layer to eliminate residual overlap
- Slightly increase ABSI thickness to cut lower momenta

"More realistic" CR momentum spectrum

Rates (Hz)	G4	Data
SC0	40	44
SC0.and.SCI "LI"	27	10
SC0.and.SC1 .and.Proto2 "L2"	9	3.3
SCI	131	56
SC2	124	62

Ratios of trigger rates agree Need more work to get agreement of absolute rate (e.g., SC inefficiencies are not simulated)

Expected Difference in dE/dx

NB: different p regions selected by direct cut on momentum, i.e. zero contamination

dE/dx (MPV, KeV/cm)

highP: 0.2491±0.0003 lowP: 0.2373±0.0005

 $\Delta = 0.0118 \pm 0.0006$ ~5% difference

Using G4 events like the data (do not measure L)

Energy Loss - "HighP"

Eloss (KeV)

Z Coordinate

- Needed to compute/correct for track length without imposing strong cuts on theta
- Use PMT time difference to measure z in the scintillator counters
- Check using small SCm0 and SCm1 scintillator counters positioned in the centre (along z) of Proto2, SC0, SC1 and SC2
 - Equivalent to $\pm 30^{\circ}$ around $\theta = 90^{\circ}$
- Compare G4 simulation with data

Conclusion

- G4 simulation (as usual..) great tool to debug setup
- May be (should be?) used to simulate test beam
- Analysis of real data has started after the summer
 - needs lots of data with present setup as strong angular cuts and/or smaller scintillators are required
 - results soon on dE/dxVS dN/dx sensitivity