

Exploring the Strong Interaction of Three-Body Systems at the LHC

Otón Vázquez Doce (INFN - LNF) LNF General Seminar, December 11th, 2024

otonvd@cern.ch Strong interaction in three-body systems at the LHC

Hadron-hadron strong interactions

Residual strong interaction among hadrons

Hadron-hadron strong interactions

Residual strong interaction among hadrons

 $\mathcal{L}_{EFT}[\pi, N, \ldots; m_{\pi}, m_N, \ldots, C_i]$

Effective theories (EFT)

- **● Hadrons as degrees of freedom**
- **● Low-energy EFT coefficients constraint by data**

Chiral Effective Field Theory (χEFT)

χEFT allows us to <u>derive nuclear interactions with a expansion</u> on Q/Λ_χ, with Q~m_π, Λ_χ~1GeV

S. Weinberg, Nuclear Physics B363, 1 (1991) 3-18

Chiral expansion:

- At **LO two-nucleon forces** are given by one-pion-exchange + NN contact terms determined from the low-energy NN scattering data

Chiral Effective Field Theory (χEFT)

χEFT allows us to <u>derive nuclear interactions with a expansion</u> on Q/Λ_χ, with Q~m_π, Λ_χ~1GeV

S. Weinberg, Nuclear Physics B363, 1 (1991) 3-18

Chiral expansion:

- At **LO two-nucleon forces** are given by one-pion-exchange + NN contact terms determined from the low-energy NN scattering data
- At **next-to-next-to-leading** order first contributions of **three-nucleon-forces arise**

Need of inclusion of many-body interaction

Fundamental ingredient for the study of the nuclear structure

○ Three-body forces necessary to describe properties of nuclei and hypernuclei

S. C. Pieper, R. B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51:53 (2001), K. Miyagawa et al., Phys. Rev. C 51, 2905 (1995)

⇒ 3-body interaction contributes sizeably (10-20%) to the binding energies of light nuclei

Need of inclusion of many-body interaction

Need of inclusion of many-body interaction

Many-body interactions in dense nuclear matter

The high densities reached in the core of **Neutron star (NS)** make energetically favorable the appearance of hyperons (reduction of fermi energy)

Radius-Mass relationship: Tolman-Oppenheimer-Volkoff equations starting from a certain Equation of State (EoS)

⇒ **With only 2-body forces hyperons EoS difficult to reach the 2 solar masses experimental value**

⇒ **NNN and NNΛ interactions** used in the modeling of the EoS of NS

D. Lonardoni et al, Phys. Rev. Lett. 114, 092301 (2015)

Many-body interactions in dense nuclear matter

⇒ Gravitational Wave spectrum from Neutron Star mergers very sensitive to the presence of hyperons in the core D. Radice et al., ApJL 842 L10 (2017)

…Need to access 3-body interactions also in the strangeness sector…

- **- where?**
- **- how?**

proton-proton collisions at the LHC

From a high-energy physics facility to nuclear physics

ALICE detector: Central barrel tracking and PID - Reconstruction of **charged particles**: p, π, K, d

proton-proton collisions at the LHC

From a high-energy physics facility to nuclear physics

ALICE ALICE detector: Central barrel tracking and PID - Reconstruction of **charged particles**: p, π, K, d

Method defined by **HBT** interferometry

- based in the **measurement of the correlation function**

$$
C(\vec{d\,})\,=\,\frac{\langle I_1I_2\rangle}{\langle I_1\rangle\langle I_2\rangle}
$$

- correlation between intensity signals of telescopes at different distances

 $C(\overrightarrow{p_a},\overrightarrow{p_b}) = \frac{P(\overrightarrow{p_a},\overrightarrow{p_b})}{P(\overrightarrow{p_a})P(\overrightarrow{p_b})}$ Measurement of **the correlation function of two particles emitted a nucleus-nucleus collision**

Experimental correlation function

$$
C(k^*) = \int S(r^*) \, \left| \Psi(k^*, \vec{r^*}) \right|^2 d^3r^*
$$

S. E. Koonin, Physics Letters B 70 (1977) 43-47 S. Pratt, Phys. Rev. C 42 (1990) 2646-2652

$$
C(k^*) = \int S(r^*) \left| \Psi(k^*, \overrightarrow{r^*}) \right|^2 d^3r^*
$$

Emission source $S(r^*)$

$C(k^*) = \int S(r^*) \Psi(k^*, \overrightarrow{r^*}) ^2 d^3 r^*$	Attractive	
Two-particle wave function	1	Repulse
Emission source $S(r^*)$	$\Psi(k^*, \overrightarrow{r^*})$	Repulse
Experimentally:	$k^*(MeV/c)$	

$$
C(k^*) = \xi(k^*) \otimes \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}
$$

Ansatz: similar source for all hadron-hadron pairs in small collision systems

The first step is "traditional" femtoscopy: known interaction \rightarrow determine source size

 \bullet p–p interaction: Argonne v18 potential

Ansatz: similar source for all hadron-hadron pairs in small collision systems

The first step is "traditional" femtoscopy: known interaction \rightarrow determine source size

● p–p interaction: Argonne v18 potential

$$
C(k^*) = \int S(r^*) \left| \Psi(k^*, \vec{r^*}) \right|^2 d^3r^*
$$

⇒ **Fit of the radius of the source of p-p pairs in p-p collisions.**

 The source size (gaussian width) here is the only fit parameter

⇒ **Perform the fit as a function of the** transverse mass of the particle pair <m_T>

The extraction of the source size parameter takes into account the effect of short-lived resonances feeding the final state particles ALICE Coll., Phys. Lett. B 811 (2020) 135849

Studying particle pairs with know interactions

⇒ **Source size <***m***^T > scaling confirmed with p-p, π-π and K-p pairs**

ALICE Coll.,arXiv:2311.14527 [hep-ph] Submitted to: EPJC

K -p interaction

ALICE Coll. Phys. Rev. Lett. 124, 092301 (2020) [ALICE Coll. Eur. Phys. J. C 83 \(2023\)](https://arxiv.org/pdf/2205.15176.pdf)

The source size is determined for any given pair <mT>

K -p interaction

ALICE Coll. Phys. Rev. Lett. 124, 092301 (2020)

The source size is determined for any given pair <mT>

K -p interaction

pΛ interaction

ALICE Coll. Phys.Lett.B 833 (2022) 137272`

 $:$ size is determined for any

31

K -p interaction

Accessing three-body systems with femtoscopy

So far… hadron-deuteron correlations

Nucleon-deuteron correlations measured at t very low energy (~ GeV beam energy), fixed target experiments

- **Large source size dominant Coulomb interaction**
- **No full-fledged calculations and unconstrained source distributions**

C. B. Chitwood et al, Phys. Rev. Lett. 54, 302 (1985) J. Pochodzalla et al, Phys. Rev. C 35, 1695 (1986) J. Pochodzalla et al, Phys. Lett. B 175 (1986) K. Wosinska et al, Eur. Phys. J. A 32, 55–59 (2007)

Hadron-deuteron correlations in pp collisions at the LHC

Hadron-deuteron correlation function as a two-body system

ALICE data in pp HM collisions compared with theoretical correlation function considering deuteron as a point-like particle

Lednický model: s-wave asymptotic wave function from scattering parameters R. Lednický, Phys. Part. Nucl. 40, 307 (2009)

Kaon-deuteron correlation function as a two-body system

ALICE data in pp HM collisions compared with theoretical correlation function considering deuteron as a point-like particle

Lednický model: s-wave asymptotic wave function from scattering parameters R. Lednický, Phys. Part. Nucl. 40, 307 (2009)

Kaon-deuteron correlation function as a two-body system

ALICE data in pp HM collisions compared with theoretical correlation function considering deuteron as a point-like particle

Lednický model: s-wave asymptotic wave function from scattering parameters R. Lednický, Phys. Part. Nucl. 40, 307 (2009)

K + –d correlation in pp HM collisions

- \bullet Source size: r = $1.35^{+0.04}_{-0.05}$ fm from universal m_T scaling
- K⁺-d scattering parameters
	- ER (effective-range approximation): a₀= −0.47 fm, d₀= −1.75 fm
	- FCA (fixed-center approximation): a₀= −0.54 fm, d₀= 0 fm

Kaon-deuteron correlation function as a two-body system

ALICE data in pp HM collisions compared with theoretical correlation function considering deuteron as a point-like particle

Lednický model: s-wave asymptotic wave function from scattering parameters R. Lednický, Phys. Part. Nucl. 40, 307 (2009)

K + –d correlation in pp HM collisions

- \bullet Source size: r = $1.35^{+0.04}_{-0.05}$ fm from universal m_T scaling
- K⁺-d scattering parameters
	- ER (effective-range approximation): a₀= −0.47 fm, d₀= −1.75 fm
	- FCA (fixed-center approximation): a₀= −0.54 fm, d₀= 0 fm

 Calculation using Coulomb + strong interaction and small radius describes the data ⇒ **deuterons are produced at very short distances w.r.t. to other hadrons**

proton-deuteron correlation function as a two-body system

ALICE data in pp HM collisions compared with theoretical correlation function considering deuteron as a point-like particle

Lednický model: s-wave asymptotic wave function from scattering parameters R. Lednický, Phys. Part. Nucl. 40, 307 (2009)

proton-deuteron correlation function as a two-body system

ALICE data in pp HM collisions compared with theoretical correlation function considering deuteron as a point-like particle

Lednický model: s-wave asymptotic wave function from scattering parameters R. Lednický, Phys. Part. Nucl. 40, 307 (2009)

p–d correlation in pp HM collisions

- \bullet Source size: r = $1.08^{+0.06}_{-0.06}$ fm from universal m_T scaling
- Strong interaction constrained from the scattering measurements

Oers et al. Nucl. Phys. A 561 (1967) vieux et al. Nucl. Phys. A92 221 (1973) uttel et al. Nucl. Phys. A406 443 (1983) ievsky et al. Phys. Lett, B406 292 (1997) Black Phys. Lett, B471 103 (1999)

proton-deuteron correlation function as a two-body system

ALICE data in pp HM collisions compared with theoretical correlation function considering deuteron as a point-like particle

Lednický model: s-wave asymptotic wave function from scattering parameters R. Lednický, Phys. Part. Nucl. 40, 307 (2009)

p–d correlation in pp HM collisions

- \bullet Source size: r = $1.08^{+0.06}_{-0.06}$ fm from universal m_T scaling
- Strong interaction constrained from the scattering measurements

For p–d, calculations with two point-like particles fail to reproduce the data:

- -Pauli blocking for p–(pn) at short distances
- -Asymptotic strong interaction not sufficient for small distances
	- ⇒ **Need for three-body calculations accounting for p-pn dynamics**

First formulation of the p–d correlation function starting from p–(pn) dynamics that form the p–d state

$$
C_{pd}(k^*) = \frac{1}{16A_d} \sum_{m_2,m_1} \int \rho^5 d\rho \, d\Omega \, \left| \Psi_{m_2,m_1\vec{k}^*} \right|^2 \, \frac{e^{-\rho^2/4R_M^2}}{(4\pi R_M^2)^3}
$$

with: $\Psi_{m_2,m_1\vec{k}^*}$ three-nucleon wave function, p–(pn) to p–d state asymptotically

 A_d deuteron formation probability using deuteron wave function

 $R_{\rm M}$ = $\rm 1.43 \pm 0.16\,fm$ nucleon-nucleon source size in the p–d system from universal m_T scaling

[PHYSICAL REVIEW C](https://doi.org/10.1103/PhysRevC.108.064002) **108**, 064002 (2023)

Role of three-body dynamics in nucleon-deuteron correlation functions

M. Viviani^{®,1,*} S. König®,^{2,†} A. Kievsky®,^{1,‡} L. E. Marcucci®,^{3,1,§} B. Singh®,^{4,∥} and O. Vázquez Doce®^{5,¶}

Red curve: full-fledged three-body calculation describes the data by including:

- **2N** force (AV18 potential) **+ 3N** force (UIX potential)
- \circ Calculation up to d-wave

Disagreement when using s-wave only (blue curve) or Coulomb only (green curve) calculations

Red curve: full-fledged three-body calculation describes the data by including:

- **2N** force (AV18 potential) **+ 3N** force (UIX potential)
- \circ Calculation up to d-wave

Disagreement when using s-wave only (blue curve) or Coulomb only (green curve) calculations

 \rightarrow additional pionless EFT NLO (s+p+d waves) three-body calculation (light red) agree with the data as well

Red curve: full-fledged three-body calculation describes the data by including:

- **2N** force (AV18 potential) **+ 3N** force (UIX potential)
- \circ Calculation up to d-wave

Disagreement when using s-wave only (blue curve) or Coulomb only (green curve) calculations

 \rightarrow additional pionless EFT NLO (s+p+d waves) three-body calculation (light red) agree with the data as well

 ALICE measurement of the p-d correlation function sensitive to dynamics of the three-body p–(pn) system at short distances

Open possibilities for the future to study 3BF

Computed correlation function with and without three-nucleon force Urbana IX ⇒

- Up to 5% effect of genuine three-body interaction
- Run 2 limited statistics does not allow to see the effect in the measurement
- LHC Run 3: ~2 orders of increase in pair statistics - Possibility to perform $m_{\overline{1}}$ differential analysis

Avenue for the study of hadron–deuteron systems, including charm and strange hadrons!

Accessing three-body systems with femtoscopy

three-body correlation function hadron-deuteron correlation p_2 p_{3}

Three-body femtoscopy

Study of three-particle correlations

⇒ Direct access to the genuine three-body forces

Three-particle correlation function:

$$
C(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) \equiv \frac{P(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)}{P(\mathbf{p}_1) P(\mathbf{p}_2) P(\mathbf{p}_3)} = \frac{N_{\text{same}}(Q_3)}{N_{\text{mixed}}(Q_3)}
$$

The Lorentz invariant Q_3 is defined as:

$$
Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{31}^2}
$$

with: $q_{ij}^{\mu} = (p_i - p_j)^{\mu} - \frac{(p_i - p_j) \cdot P_{ij}}{P_{ij}^2} P_{ij}^{\mu}$ $P_{ij} \equiv p_i + p_j$

Three-body femtoscopy

Study of three-particle correlations ⇒ Direct access to the genuine three-body forces

Three-particle correlation function:

$$
C(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) \equiv \frac{P(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)}{P(\mathbf{p}_1) P(\mathbf{p}_2) P(\mathbf{p}_3)} = \frac{N_{\text{same}}(Q_3)}{N_{\text{mixed}}(Q_3)}
$$

The Lorentz invariant Q_3 is defined as:

$$
Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{31}^2}
$$

with:
$$
q_{ij}^{\mu} = (p_i - p_j)^{\mu} - \frac{(p_i - p_j) \cdot P_{ij}}{P_{ij}^2} P_{ij}^{\mu}
$$

$$
P_{ij} \equiv p_i + p_j
$$

49

⇒ **benchmark, structure of nuclei** ⇒ **Equation of state of NS containing hyperons**

Three-body correlation function:

 Full calculations of a three-body system are necessary to interpret the data

 Three-body correlation function: **Full calculations of a three-body system a**

- Two-body interactions + Coulomb + Antisymmetrization
- Hyper-source radius determined from the two-body p-p and p-Λ sources

courtesy of Raffaele Del Grande $C\left(Q_{3}\right)$ ALICE data $NN + NA$ interactions 25 $---NN + NA + NNA$ model (II) 20 **p-p-Λ** $15¹$ 10 **CALCULATIONS** 5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Q_3 (GeV/c)

- ⇒ Two-body interactions + Coulomb + Antisymmetrization
- ⇒ Hyper-source radius determined from the two-body p-p and p-Λ sources
- **OGRESS** $\frac{1}{4}$ ⇒ Inclusion of the ΛΝΝ (model II)

Summary and outlook

Femtoscopy technique can be used to provide **unprecedented constraints on hadron-hadron interactions…**

- **●** Now ALICE has **access to the three-body dynamics** via measurements of
	- hadron-deuteron correlations
	- three-body correlation function
- **●** More data = more fun: Present studies within reach with the current **Run 3**
	- **Stats x100!**
	- Three-particle triggers: p-p-Λ
	- Future: ALICE3, a completely new detector will allow to extend our studies to the charm sector

ALICE₃

Ultra-thin dedicated

heavy-ion experiment