

LHCb experiment at LHC

Barbara Sciascia for the Frascati LHCb group:

M.Anelli, F.Archilli, G.Bencivenni, P.Campana, P.Ciambrone, P.de Simone, G.Felici, G.Lanfranchi, F.Murtas, M.Palutan, R.Rosellini, M.Santoni, A.Saputi, A.Sarti, B.Sciascia, A.Sciubba, F.Soomro

19 January 2012 43rd LNF Scientific Committee meeting

Outline

- LHCb in a nutshell;
- 2011 data taking;
- 2012 and beyond.

LNF contribution to LHCb

LHCb at LHC

LHCb **detector** covers the forward region at the LHC in a unique rapidity range: $2 < \eta < 5$.

LHCb exploits the strongly forward peaked heavy quark production: covering only 4% of solid angle the acceptance for b-quark production cross section is ~40%.

Large cross sections (at 7 TeV): $\sigma(bb) = 284\pm53 \ \mu b$; now $\sim 10^{11} \ b$ decays on tape $\sigma(cc) = 6100\pm930 \ \mu b$; now $\sim 10^{12} \ D$ decays on tape.

Trigger:

L0 (hardware): ~1 MHz from high $p_T \mu$, e, γ , h candidates. High Level Trigger (HLT1+HLT2, software): ~3 kHz global event reconstruction plus selections

LHCb detector

1.8

1.6

1.2

0.8

0.6

0.4

0.2

0

Integrated Luminosity (1/fb)

Data taking in 2011

- **1.1 fb**⁻¹ acquired in 2011;

FULLY ON: 90.48 (%)

VELO Safety: 0.97 (%)

26/04

26/05

25/06

25/07

24/08

23/09

HV: 0.58 (%)

DAQ: 4.24 (%)

DeadTime: 3.74 (%)

- 91% data taking efficiency, including data quality;

- Well **beyond design parameters**: peak luminosity and μ (pp-interactions per bunch crossing);

- Luminosity leveling at 3.5×10^{32} cm⁻²s⁻¹ nicely working with both magnet polarities

LHCb Integrated Luminosity at 3.5 TeV in 2011

27/03

Date

1700

1800

1900

2000

2100

2200

LHC Fill Number

23/10

Delivered Lumi: 1.2195 /fb

Recorded Lumi: 1.1067 /fb

LHCb ГНСр

LHCb physics program

Wide physics program:

- Onia, heavy flavour production and spectroscopy: b-hadron masses, X(3872), $pp \rightarrow p+X+p,...$
- B \rightarrow Dh: towards γ CKM angle, ...
- ϕ_S related: time dependent B_S studies,...
- Rare B decays: $B_{S,d} \rightarrow \mu\mu$, $B \rightarrow h\mu\mu$,...
- Charmless B decays: CPV,...
- Charm physics: CPV first evidence,...
- Beyond heavy flavour: W and Z, inclusive jet and dijet, K_S, Λ, ϕ production

LNF contribution to LHCb

LNF, a "muon oriented" role: from the **construction** of the detector to the heart of the LHCb flavour physics program.

Muon system:

- operation and hw maintenance
- offline efficiency

Muon Identification:

- acceptance and efficiency
- mis-identification rate

Data analysis (direct involvement):

- J/ ψ production cross section;
- (three times!) $B_{S,d} \rightarrow \mu \mu$:
- 37 pb⁻¹ (published Mar 2011),
- 370 pb⁻¹(published Dec 2011),
- 1 fb⁻¹ (2012 winter conferences);

- other rare decays (e.g. $\tau \rightarrow 3\mu$) in the near future.

LHCb upgrade: Muon System (again!) and some "not muon" R&D

LNF specific tasks:

- Muon Piquet Shifts;
- Muon Detector Operation Coordinator;
- B_Sµµ WG convener;
- Spokesperson.

LHCb Muon System

5 tracking stations (M1 upstream from calorimeter)

- subdivided in **4 regions** with different granularities

- equipped with MWPC apart GEM in M1R1

~26000 logical channels

MuonID:

- extrapolate tracks
- find hits in a FoI (Field of Interest)
- muon candidate requires hits in different stations depending on the momentum
- from associated hits, calculate "muon probability".

Muon System offline efficiency monitor

New version ready for 2012 run:

- also M1;
- use of a trigger unbiased sample;
- efficiency monitor also per charge.
- test with 44 pb⁻¹ MagUp, 100 pb⁻¹ MagDw

Implementation of the Offline Muon System monitor (M2-M5 stations).

 $(J/\psi \rightarrow \mu^+\mu^- \text{ from B with } p_\mu > 15 \text{ GeV/c})$

Muon Identification: 1D results

S17 2b S17 3b

1.05

Two steps needed to "have a μ " in the event:

- pass through the MS: geom. acceptance;
- produce a signal in the MS: efficiency.

Acce x Effi MC 2b MC 3b Two suitable calibration lines: $\mathbf{B} \rightarrow \mathbf{J}/\mathbf{\psi}\mathbf{X}$ (2b) and $\mathbf{B}^+ \rightarrow \mathbf{J}/\mathbf{\psi}\mathbf{K}^+$ (3b). 0.95 Tag-and-probe + fit and bkg subtraction. Muon 0.9 system Tracking u tag system 0.85 $J/\psi \rightarrow \mu\mu$ μ probe 0.8 20 40 60 80

1D results (acceptance, efficiency, and both) as a function of \mathbf{p} or \mathbf{p}_{T} ;

- complete systematic studies;

Universal curves, already used in many analyses: $B_S \rightarrow \mu\mu$ (370 pb⁻¹), A_{SI} , $B_S \rightarrow K^* \mu\mu$,...

- detailed LHCb note available to the collaboration.

×10³

100

Momentum (MeV/c)

LHCр

Muon Identification: 2D results

- measure from data, same side (different charge μ behave in the same way in the same side) and same charge (same charge μ behave in the same way in opposite side) differences. - 2D corrections already applied in on going analyses: $B_S \rightarrow \mu\mu (1 \text{ fb}^{-1})$, $B_S \rightarrow K^*\mu\mu$, $D \rightarrow h\mu\mu$, ...

- New LHCb note in preparation

Relevant issue to control background in rare decays with muons (e.g. $B \rightarrow hh$ for $B_d \rightarrow \mu\mu$).

Measure **from data** the probability of "muon mis-identification" as a function of (p,p_T):

- $\pi \rightarrow \mu$ or $\mathbf{K} \rightarrow \mu$ from $D^* D_0(\mathbf{K}\pi)\pi$ decays
- $p \rightarrow \mu$ from $\Lambda \rightarrow p\pi$ decays.

(from 900 pb⁻¹ of 2011 data; TIS trigger unbias of the π/K track)

 $B_{(d,s)} \rightarrow \mu \mu$ is the best way for LHCb to constrain the parameters of the extended Higgs sector in MSSM, fully complementary to direct searches

LHCb

$B_{S}\mu\mu$: analysis strategy

Selection:

- μ -based trigger + selection to reduce the size of data set
- similar for control/normalization channels

Signal and background discrimination relies on:

- very good mass resolution: $\delta p/p \sim 0.35\% \Rightarrow \delta m/m \sim 0.55\%$ for p=5-100 GeV/c
- muon PID: $\varepsilon(\mu \rightarrow \mu) \sim 98\%$, $\varepsilon(h \rightarrow \mu) < 1\%$, for p>10 GeV
- excellent vertex and IP resolution $\sigma(IP) \sim 25 \ \mu m, \ p_T = 2 \ GeV/c$

Discriminating signal and background using two variables:

- Invariant mass of $\mu^+\mu^-$: parameterization from data.
- Output of a **Boosted Decision Tree, BDT**

(from TMVA, use kinematical and topological variables).

Normalization:

- use known B decay channels (B⁺ \rightarrow J/ ψ K⁺, B_S \rightarrow J/ $\psi\phi$, and B_d \rightarrow K π) to derive BR:

$$\mathcal{B} = \mathcal{B}_{\text{norm}} \times \frac{\epsilon_{\text{norm}}^{\text{REC}} \epsilon_{\text{norm}}^{\text{SEL}|\text{REC}} \epsilon_{\text{norm}}^{\text{TRIG}|\text{SEL}}}{\epsilon_{\text{sig}}^{\text{REC}} \epsilon_{\text{sig}}^{\text{SEL}|\text{REC}} \epsilon_{\text{sig}}^{\text{TRIG}|\text{SEL}}} \times \frac{f_{\text{norm}}}{f_{d(s)}} \times \frac{N_{B_{(s)}^0 \to \mu^+ \mu^-}}{N_{\text{norm}}} = \alpha_{B_{(s)}^0 \to \mu^+ \mu^-}^{\text{norm}} \times N_{B_{(s)}^0 \to \mu^+ \mu^-}$$

- LHCb $f_S/f_d = 0.267^{+0.021}_{-0.020}$ Phys. Rev.Lett. 107, 211801 (2011), arXiv:1111.2357v1.

Lнср

B_Sμμ: BDT

Output of BDT: Probability - built on 9 kinematical and topological variables; - trained on MC (~0 for bkg, 0-1 flat for sig); 10 Signal Background 10⁻² BDT output **shapes from data**, by $M_{\mu\mu}$ fit in four BDT bins: 10⁻³ - signal, $B^0_{(S)} \rightarrow h^+h^-$ events LHCb - combinatorial background, B mass sideband 10 0.2 0.3 0.9 0.6 0.8 0.7 BDT LHCb 0.25<BDT<0.5 LHCb 0<BDT<0.25 0.25<BDT<0.5 0<BDT<1 LHCb LHCb ž 1200 1000 8 800 600 400 200 4800 5000 5200 5400 5600 5800 m_ (MeV/c²) 5000 5200 5400 5600 5800 m_, (MeV/c2) m__ (MeW/c2) m_ (MeV/c²) 0.5<BDT<0.75 0.75<BDT<1 LHCb 0.5<BDT<0.75 LHCb 0.75<BDT<1 50 MeV/c² es per 40 MeV LHCb LHCb 2 10 8 innts/(→ p # combinator ohysical 5800 5200 5800 m_ (MeV/c²) m., (MeV/c2) m., (MeV/c2) m_ (MeV/c²)

43rd LNF Scientific Committee - B.Sciascia for LHCb LNF group

$B_{S}\mu\mu$: invariant mass

Signal invariant mass shape:

Average value measured on data using $B^+ \rightarrow J/\psi K^+$ and $B_S \rightarrow J/\psi \phi$ candidates

Resolution from data by linear interpolation between the measured resolutions of charmonium and bottomoniu di-muon resonance

$B_{S}\mu\mu$: selected events

LHCb

Projection in the B_s or in the B_d invariant mass search window (m_B±60MeV/c² divided into 6 bins) for the four BDT output bins.

m_{µµ} (MeV/c²)

5400

5200

5000

4800

43rd LNF Scientific Committee - B.Sciascia for LHCb LNF group

$B_{S}\mu\mu$: result (370 pb⁻¹)

BDT	0 ÷0.25	0.25÷0.50	0.50÷0.75	0.75+1.0
expected combinatorial	3325±39	40.8±3.8	6.8±2.3	0.63±0.50
expected SM signal	1.29±0.23	0.72±0.12	0.90±0.11	0.89±0.13
observed	3182	46	5	3

Combinatorial background

Peaking background (~0.24/bin)

Translate number of observed events into BR measurement by normalization channels.

Extract <u>observation/exclusion measurement</u> using modified frequentist CL_S method [A. Read, J. Phys. G 28 (2002) 2693] in 6x4 bins of m($\mu^+\mu^-$) and BDT output:

Expected distribution of CL_S (dashed black) under the hypothesis to observe a combination of background and signal (B_S) or background only (B_d) events according to the SM rate. The green area covers the $\pm 1\sigma$ of compatible observations.

Observed distributions of CL_S (= CL_{s+b}/CL_b) as a function of the assumed BR (dotted blue).

Translate number of observed events into BR measurement by normalization channels.

Extract <u>observation/exclusion measurement</u> using modified frequentist CL_s method [A. Read, J. Phys. G 28 (2002) 2693] in 6x4 bins of m($\mu^+\mu^-$) and BDT output:

Papers:

Searches for the rare decays $B0s \rightarrow \mu + \mu - and B0 \rightarrow \mu + \mu - arXiv:1112.1600$; Accepted by Phys. Lett. B Search for the rare decays $B0s \rightarrow \mu + \mu - and B0 \rightarrow \mu + \mu - arXiv:1103.2465$; Phys. Lett. B 699 (2011) 330-340 Measurement of J/ ψ production in pp collisions at $s\sqrt{= 7 \text{ TeV}}$ arXiv:1103.0423; Eur. Phys. J. C 71 (2011) 1645

Notes:

Results on Muon identification efficiency with 2011 data at LHCbLHCb-INT-2011-045; CERN-LHCb-INT-2011-045Muon Identification performance at LHCb with the 2010 dataLHCb-INT-2011-048; CERN-LHCb-INT-2011-048A Muon Identification procedure for LHCb with Kalman FilterLHCb-INT-2010-052; CERN-LHCb-INT-2010-052Measurement of the J/ψ production cross-section in LHCbLHCb-INT-2010-045; CERN-LHCb-INT-2010-045Calibration Strategy and Efficiency measurement of the Muon Identification procedure at LHCbLHCb-PUB-2010-002; CERN-LHCb-PUB-2010-002A 1 mm Scintillating Fiber Tracker Readout by a Multi-anode PhotomultiplierarXiv:1106.5649

Required luminosity for a 3σ evidence or a 5σ discovery of a given $BR(B_{S}\mu\mu)$ for LHCb and CMS combined.

For LHCb: evidence ~1.7 fb⁻¹, discovery ~5.1 fb⁻¹.

Once the $B_s \rightarrow \mu \mu$ is measured, start to constraining the B_d/B_s ratio (prime interest for MFV scenario)

LHCb ГНСр

Data taking perspectives:

- based on 2011 experience and running at 4×10^{32} cm⁻²s⁻¹, LHCb can collect ≥ 1.5 fb⁻¹/year
- 2.5 fb⁻¹ at 7 TeV and 4.5 fb⁻¹ at 14 TeV (σ_{bb} =0.3mb @7 TeV, 0.6mb @14 TeV)
- by the end of 2017, $\times 12$ the present (2011) data sample.
- upgrade plan: with 1-2×10³³cm⁻²s⁻¹ LHCb can collect 4-8 fb⁻¹/year.

Physics Case: (LHCC feedback, march 2011)

The Committee congratulates LHCb for the excellent work done on the physics case for the upgrade. It finds the arguments for flavour physics with 50 fb⁻¹ very compelling. This amount of data allows measurements at the level of the theoretically achievable precision for many quantities sensitive to new physics. With 5 fb⁻¹ of collected data, most searches for deviations from the Standard Model (SM) predictions will be turned into precision measurements of the SM value with the LHCb upgrade. The level of accuracy achievable is comparable, in case of overlap, with that foreseen at future SuperB factories with 50 ab⁻¹; this makes the upgraded LHCb experiment a well-matched competitor and a very important complement.

To profit of the luminosity increase:

- present trigger HW limitation: 1MHz for L0 => readout all the sub-detectors at 40 MHz;
- exploit a fully software and flexible HLT trigger;

R&D for some needed/wanted new sub-detectors.

Upgrade and consolidations activities for the LHCb Muon System

Electronics: define the architecture for 40 MHz readout start testing FPGA; check details for the feasibility of the proposed scheme

Chambers:

- The **long term resistance** of the Muon Chambers has to be yet understood (up to now non significant ageing, but high currents in some chamber which are cured by conditioning).

- **Rate effects** must be verified for inner regions (in principle no problems below 10^{33} cm⁻²s⁻¹).

- **M1 will be removed** (p_T given by track finding in the farm).

- Chambers and electronics spare pools to be increased (lack of chamber spares) most probably using the long shutdown 2013-2014.

- Better shield for **backsplashes in M5** (under study)

LNF potential interest towards other items, in particular the tracking system.

Needed/possible replacement of **central Outer Tracker modules** exposed to radiation and high hits density.

Different technology options under study for T stations:

- Ongoing LNF R&D activity on thick SciFi [B.D.Leverington et al. arXiv:1106.5649]
- LNF task force to study/define further possible involvements.

LHCb detector is working very well, and we experienced a very good data taking. Plenty of physics results, with more and more statistics.

The LNF LHCb group :

- contributed substantially **maintenance and monitoring of the Muon System**: muon chamber efficiency monitoring, offline muon ID validation, calibration and monitoring.

- give active contribution to data taking: **run chief**, **muon piquet** and **data quality** shifts attended.

- full integrated with LHCb analysis WGs, deeply involved in Rare Decays WG (study of rare decays with muon in the final states) with a leading role in the LHCb milestone $B_{S,d} \rightarrow \mu^+\mu^-$)

- is interested (together with other Italian LHCb groups) in a **possible LHCb upgrade**:

* already committed for Muon System upgrade and maintenance;

* ongoing R&D on specific (and new) sub detectors: open opportunities, to be explored in the very next future.

Additional information

20 20

50

70

20

30

F.Archilli	100		-
G.Bencivenni	70	P.Clambrone	20
P.Campana	0 LHCb spokesman!	G.Felici	20
P.DeSimone	70	M. Amalli	F (
G.Lanfranchi	100	M.Anelli	50
F.Murtas	40	R.Rosellini	70
M.Palutan	100	M.Santoni	20
A.Sarti	80	A.Saputi	30
B.Sciascia	70		
A.Sciubba	70	SPCM 4 mesi u	omo
F. Soomro	100	SELF 10 mesi u	omo

FTE 8,0

Economical reque	sts (keuro)	
ИE	106	
II	16	
Consumo	26	
nventariabile	5	
Costr.Apparati	85	

LHCb detector

43rd LNF Scientific Committee - B.Sciascia for LHCb LNF group

LHCb Trigger

Hardware Level (L0): ~1 MHz from high $p_T \mu$, e, γ , hadron candidates (ECAL, HCAL, Muon System).

Software Level (High Level Trigger, HLT): access all detector data; farm with ~15000 CPU cores on multi-processor commodity boxes;

HLT1: ~30 kHz; confirm L0 candidate with more complete info, add impact parameter and lifetime cuts.
HLT2: ~3 kHz; global event reconstruction plus selections

 $L \sim 3.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ Average pileup ~ 1.5

Tested successfully: $L = 4. \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ it is twice the design luminosity.

- We proved LHCb can run at L= $4.\times 10^{32}$ cm⁻²s⁻¹: collect more than 1.5 fb⁻¹ per year of data taking.

- Plan: run one year at $\sqrt{s}=7$ TeV, then move up to $\sqrt{s}=14$ TeV, for three years, until 2017.
- 2017 integrated luminosity: ~6 fb⁻¹ equivalent to $\sqrt{s}=14$ TeV.

2011 reprocessing

CERN not used for reprocessing (dedicated to processing incoming data) Around 25 % of reprocessing jobs ran on Tier 2 sites

The timeline of flavor physics

What SuperB can<u>not</u> do*

Golden modes of other flavor experiments

Observable	Current value	Experiment	Precision	
$BR(B_s \to \mu\mu) \ (\times 10^{-9})$	$< 15^{a}$	LHCb	± 1	
	~	LHCb upgrade	± 0.3	
$2\beta_s \text{ from } B_s^0 \to J/\psi \phi \text{ (rad)}$	0.13 ± 0.19^{b}	LHCb	0.019	
		LHCb upgrade	0.006	
$S \text{ in } B_s \rightarrow \phi \gamma$		LHCb	0.07	
		LHCb upgrade	0.02	
$K^+ \to \pi^+ \nu \overline{\nu} \; (\% \; \mathrm{BR \; measurement})$	7 events	NA62	100 events (10%)	
$K_L^0 \to \pi^0 \nu \overline{\nu}$		KOTO	3 events (observe)	
$BR(\mu \to e\gamma) \ (\times 10^{-13})$	< 280	MEG	< 1	
$R_{\mu e}$	$<7\times10^{-12}$	COMET/Mu2E	$< 6 \times 10^{-17}$	

* with competitive performances

Marco Ciuchini	CSN1 – Firenze - 22 November 2011	Page 6

LHCb versus SuperB

LHCb

Muon Identification

Definitions:

Two steps needed to "have a μ " in the event:

- pass through the Muon System: geometrical acceptance (*MuAcc* flag);
- produce a signal in the Muon System: efficiency (IsMuon flag, given MuAcc).

Samples:

Data: ~1 fb⁻¹ from two suitable calibration lines: $B \rightarrow J/\psi X$ and $B^+ \rightarrow J/\psi K^+$ events. MC: ~300 pb⁻¹ equivalent.

Methods:

- Tag-and-probe, fit and bkg subtraction;
- Systematic error determined for different:

ε determination, background subtraction, εtrigger unbias, parameterization, sample,...

Results:

1D: acceptance and efficiency corrections as a function of the p or p_T of probe.

2D: acceptance and efficiency corrections as a function of (p,p_T) ; for p_T same binning as misID study.

Universal curves: needed to all analysis involving muons

- two methods to measure $\epsilon(\mu ID)$:

$$\begin{array}{l} \textbf{0)} \quad \epsilon_{\text{tot}} = \frac{S}{S+B} \epsilon_{\text{muonID}} + \frac{B}{S+B} \epsilon_{\text{bkg}} \\ \\ \textbf{1)} \quad \epsilon_{\text{muonID}} = \frac{N_{\mu_{\text{probe}}} \left(IsMuon = 1 \right)}{N_{\mu_{\text{probe}}} \left(IsMuon = 1 \right) + N_{\mu_{\text{probe}}} \left(IsMuon = 0 \right)} \end{array}$$

two S,B determinations:
0) full signal plus background
lineshape (Crystal Ball + linear bkg)
1) background subtraction from linear
fit to the mass side band

Four possible combinations; allow to determine the systematic error due to method and bkg subtraction
combinations agree within 0.1% a part 0.5% difference for 00 combination

6000

Acceptance: 2D (p,p_T) vs 1D p

Acceptance, measured on data for the 2-body (JpsiFormB) sample

Efficiency: 2D (p,p_T) vs 1D p

Efficiency, measured on data for the 2-body (JpsiFormB) sample

Digression on detector (A)symmetries

Same side: muons of different charge behave in the same way in the same side
Side A: Up-μ⁻ = Dw-μ⁺
Side C: Up-μ⁺ = Dw-μ⁻ << test this combination.</p>

Same charge: muons with same charge behave in the same way in opposite side μ^- : Dw- μ^- (Side C) = Up- μ^- (Side A) μ^+ : Up- μ^+ (Side C) = Dw- μ^+ (Side A)

$B_{S}\mu\mu$ upper limit: summer 2011

BR limits at 95%CL

LHCb: 1.6×10⁻⁸ L~300 pb⁻¹

LHCb-CONF-2011-037

CMS: 1.9×10⁻⁸ L~1.1 fb⁻¹ Phys. Rev. Lett. 107 (2011) 191802

LHCb+CMS: 1.1×10⁻⁸

LHCb-CONF-2011-047 CMS PAS BPH-11-019

CDF: **4.0**×10⁻⁸ L~7 fb⁻¹

Phys. Rev. Lett. 107 (2011) 191801

D0: 5.1×10⁻⁸ L~6.1 fb⁻¹ Phys. Lett. B693 (2010) 539 The past 13 years

Trigger for $B_{S,d}\mu\mu$

	40MHz		Muon Lines				
L0	μ, had e [±] μμ 1MHz	L0	Single- μ : $p_T > 1.4 \text{ GeV/c}$ $\mu\mu$: $p_{T1} > 0.56 \text{ GeV/c}$ $p_{T2} > 0.48 \text{ GeV/c}$				
HLT1	PT muon ID	HLT1	single-µ: p _T >0.8 GeV/c IP>0.11 mm				
	30kHz		single- μ : p_T >1.8 GeV/c (no IP)				
HLT2	inclusive selections exclusive selections	HLT2	Several lines with $M_{\mu\mu}$ cuts and/or displaced vertex				
	2kHz						

Half of the bandwidth (~1 kHz) given to the muon lines
p_T cuts on muon lines kept very low → ε(trigger B_{sd}→μμ) ~ 90%
Trigger rather stable during the whole period (despite L increased by ~10⁵)

$B_{S,d}\mu\mu$ (370 pb⁻¹) result

							г			BDT			
							1	s _d μμ		0 0.25	0.25 - 0.5	0.5 - 0.75	0.75 - 1.
	D			BI	DT				Expected comb. bkg	$614.2\substack{+7.5\\-7.0}$	$7.23_{-0.68}^{+0.77}$	$1.31_{-0.40}^{+0.46}$	$0.123_{-0.072}^{+0.107}$
	Β _S μμ		0 0.25	0.25 - 0.5	0.5 - 0.75	0.75 - 1.		5212 - 5232	Expected peak. bkg	$0.203^{+0.038}_{-0.034}$	$0.206^{+0.038}_{-0.034}$	$0.203^{+0.037}_{-0.034}$	$0.205_{-0.034}^{+0.038}$
		Expected comb. bkg	$575.5^{+6.5}_{-6.0}$	$6.96^{+0.63}_{-0.57}$	$1.19^{+0.39}_{-0.35}$	$0.111^{+0.083}_{-0.066}$			Cross-feed	$0.0056\substack{+0.0021\\-0.0020}$	$0.00312\substack{+0.00119\\-0.00087}$	$0.00391\substack{+0.00107\\-0.00078}$	$0.00387^{+0.00122}_{-0.00092}$
	5298 - 5318	Expected peak. bkg	$0.126\substack{+0.037\\-0.030}$	$0.124\substack{+0.037\\-0.030}$	$0.124_{-0.030}^{+0.037}$	$0.127\substack{+0.038\\-0.031}$			Expected signal	$0.0070\substack{+0.0027\\-0.0026}$	$0.0039^{+0.0015}_{-0.0011}$	$0.0049^{+0.0014}_{-0.0010}$	$0.0048^{+0.0016}_{-0.0012}$
		Expected signal	$0.059^{+0.023}_{-0.022}$	$0.0329^{+0.0128}_{-0.0095}$	$0.0415\substack{+0.0120\\-0.0085}$	$0.0411^{+0.0135}_{-0.0099}$			Observed	554	6	0	2
		Observed	533	10	1	0			Expected comb. bkg	$605.0^{+7.2}_{-6.8}$	$7.17_{-0.65}^{+0.74}$	$1.29_{-0.39}^{+0.44}$	$0.121^{+0.102}_{-0.072}$
		Expected comb. bkg	$566.8^{+6.3}_{-5.8}$	$6.90\substack{+0.61\\-0.55}$	$1.16\substack{+0.38\\-0.34}$	$0.109\substack{+0.079\\-0.063}$		5232 - 5252	Expected peak. bkg	$0.281^{+0.056}_{-0.049}$	$0.279^{+0.056}_{-0.049}$	$0.280^{+0.056}_{-0.049}$	$0.280^{+0.058}_{-0.050}$
	5318 - 5338	Expected peak. bkg	$0.052\substack{+0.023\\-0.018}$	$0.054\substack{+0.026\\-0.019}$	$0.052\substack{+0.024\\-0.018}$	$0.051\substack{+0.023\\-0.018}$			Cross-feed	$0.0071\substack{+0.0027\\-0.0026}$	$0.0039^{+0.0015}_{-0.0011}$	$0.00496\substack{+0.00134\\-0.00099}$	$0.0049^{+0.0016}_{-0.0012}$
		Expected signal	$0.205\substack{+0.073\\-0.074}$	$0.114^{+0.040}_{-0.031}$	$0.142\substack{+0.036\\-0.025}$	$0.142^{+0.042}_{-0.031}$			Expected signal	$0.0241\substack{+0.0086\\-0.0087}$	$0.0135^{+0.0048}_{-0.0037}$	$0.0169\substack{+0.0042\\-0.0031}$	$0.0167\substack{+0.0050\\-0.0037}$
5		Observed	525	9	0	1			Observed	556	4	2	1
N/v		Expected comb. bkg	$558.2^{+6.1}_{-5.6}$	$6.84_{-0.54}^{+0.59}$	$1.14_{-0.33}^{+0.37}$	$0.106\substack{+0.075\\-0.060}$			Expected comb. bkg	$595.9^{+7.0}_{-6.5}$	$7.10^{+0.71}_{-0.63}$	$1.26_{-0.37}^{+0.42}$	$0.119^{+0.097}_{-0.072}$
Ň	5338 - 5358	Expected peak. bkg	$0.024^{+0.028}_{-0.012}$	$0.025^{+0.026}_{-0.012}$	$0.024^{+0.027}_{-0.012}$	$0.025_{-0.012}^{+0.025}$		5252 - 5272	Expected peak. bkg	$0.323_{-0.051}^{+0.075}$	$0.326^{+0.074}_{-0.061}$	$0.324^{+0.072}_{-0.060}$	$0.325_{-0.062}^{+0.075}$
DBSS		Expected signal	$0.38^{+0.14}_{-0.14}$	$0.213^{+0.075}_{-0.058}$	$0.267^{+0.065}_{-0.047}$	$0.265_{-0.058}^{+0.077}$	67 [Cross-feed	$0.0097\substack{+0.0036\\-0.0035}$	$0.0054^{+0.0021}_{-0.0015}$	$0.0068\substack{+0.0018\\-0.0013}$	$0.0067\substack{+0.0021\\-0.0016}$
ut 1		Observed	Observed 561 6 2 1	1	IeV.		Expected signal	$0.045\substack{+0.016\\-0.016}$	$0.0252\substack{+0.0088\\-0.0067}$	$0.0317\substack{+0.0077\\-0.0057}$	$0.0313\substack{+0.0093\\-0.0068}$		
varia	5358 - 5378	Expected comb. bkg	$549.8^{+6.0}_{-5.4}$	$6.77^{+0.57}_{-0.52}$	$1.11^{+0.36}_{-0.32}$	$0.103^{+0.073}_{-0.057}$	ant mass [N		Observed	588	11	1	0
1		Expected peak. bkg	$0.0145^{+0.0220}_{-0.0091}$	$0.0151^{+0.0230}_{-0.0091}$	$0.0153\substack{+0.0232\\-0.0098}$	$0.015^{+0.023}_{-0.010}$		5272 - 5292	Expected comb. bkg	$586.9^{+6.7}_{-6.3}$	$7.04^{+0.68}_{-0.60}$	$1.23^{+0.41}_{-0.36}$	$0.117^{+0.092}_{-0.071}$
		Expected signal	$0.38^{+0.14}_{-0.14}$	$0.213^{+0.075}_{-0.057}$	$0.267^{+0.065}_{-0.047}$	$0.265^{+0.077}_{-0.057}$			Expected peak. bkg	$0.252^{+0.058}_{-0.047}$	$0.252^{+0.056}_{-0.045}$	$0.253^{+0.059}_{-0.048}$	$0.250^{+0.056}_{-0.045}$
		Observed 515 7 0 0	War		Cross-feed	$0.0154^{+0.0058}_{-0.0055}$	$0.0086^{+0.0033}_{-0.0024}$	$0.0108^{+0.0029}_{-0.0021}$	$0.0106^{+0.0033}_{-0.0025}$				
		Expected comb. bkg	$541.5^{+5.8}_{-5.3}$	$6.71^{+0.55}_{-0.51}$	$1.09^{+0.34}_{-0.31}$	$0.101^{+0.070}_{-0.054}$	1		Expected signal	$0.045_{-0.016}^{+0.016}$	$0.0251^{+0.0089}_{-0.0067}$	$0.0317^{+0.0077}_{-0.0057}$	$0.0313^{+0.0092}_{-0.0069}$
	5378 - 5398	Expected peak. bkg	$0.0115^{+0.0175}_{-0.0086}$	$0.0116^{+0.0177}_{-0.0090}$	$0.0118^{+0.0179}_{-0.0090}$	$0.0118^{+0.0179}_{-0.0088}$			Observed	616	5	2	1
		Expected signal	$0.204^{+0.073}_{-0.074}$	$0.114^{+0.040}_{-0.031}$	$0.142^{+0.036}_{-0.026}$	$0.141^{+0.042}_{-0.031}$			Expected comb. bkg	$578.1^{+6.5}_{-6.1}$	$6.98^{+0.66}_{-0.58}$	$1.20^{+0.39}_{-0.35}$	$0.114^{+0.087}_{-0.067}$
		Observed	547	10	1	1		5292 - 5312	Expected peak. bkg	$0.124^{+0.023}_{-0.021}$	$0.124^{+0.023}_{-0.021}$	$0.123^{+0.023}_{-0.021}$	$0.124^{+0.023}_{-0.021}$
		Expected comb. bkg	$533.4_{-5.2}^{+5.7}$	$6.65_{-0.49}^{+0.53}$	$1.07^{+0.34}_{-0.30}$	$0.098^{+0.068}_{-0.051}$			Cross-feed	0.038+0.015	0.0214+0.0086	0.0270+0.0080	0.0266+0.0089
	5398 - 5418	Expected peak. bkg	0.0089_0.0065	0.0088+0.0133	$0.0091^{+0.0138}_{-0.0070}$	0.0090+0.0137			Expected signal	0.0241+0.0086	0.0134+0.0048	$0.0169^{+0.0042}$	0.0167+0.0050
		Expected signal	$0.058^{+0.024}_{-0.021}$	$0.0323_{-0.0093}^{+0.0128}$	$0.0407_{-0.0087}^{+0.0120}$	$0.0402_{-0.0097}^{+0.0137}$			Observed	549	7	0	0
		Observed	501	4	1	0			Expected comb. bkg	569.3+6.3	6.92+0.63	1.18+0.38	0.111+0.083
								5312 - 5332	Expected peak, bkg	0.047+0.023	0.047+0.022	0.047+0.021	$0.047^{+0.021}_{-0.012}$
									Cross-feed	0.149+0.055	0.083+0.031	0.104+0.027	0.103+0.031
									Expected signal	0.0068+0.0028	0.0038+0.0015	0.0048+0.0014	0.0048+0.0016
									Observed	509	10	1	1

Required luminosity for a 3σ evidence or a 5σ discovery of a given BR(B_Sµµ) for LHCb and CMS.

Required luminosity for a 3σ evidence or a 5σ discovery of a given BR(B_Sµµ) for LHCb and CMS combined.

For LHCb: evidence ~1.7 fb⁻¹, discovery ~5.1 fb⁻¹.

[arXiv:1108.3018]

Required luminosity for a 3σ evidence or a 5σ discovery of a given precision to which LHCb and CMS combined can constrain contributions exceeding BR(B_Sµµ) SM.

Once the $B_s \rightarrow \mu\mu$ is measured, we can start constraining the B_d/B_s ratio, which is of prime interest for the MFV scenario.

$B_{S}\mu\mu$: extrapolated sensitivity

7 TeV run

Upper limit extrapolation in the presence of SM signal

Observation: a 3σ evidence of SM signal observation is possible within the end of 7 TeV run.

• LHC 2011 MET searches only

• LHC 2011 MET searches and $B_s \to \mu \mu$

 $B_{S} \rightarrow \mu \mu$ upper limit pushes tan β down (opposite direction wrt direct searches)

a valuable benchmark of any BSM theory in large $tan\beta$ regime

ϕ_s : Ambiguity Resolution

Use few % S wave KK present in the sample

Similar to Babar measurement of sign of $cos(2\beta)$, PRD 71, 032005 (2007)

ϕ_s : Ambiguity Resolution

 W_p

0.700

0.952

0.938

0.764

68% C.L. (stat. + syst.) 90% C.L. (stat. + svst.)

95% C.L. (stat. + syst.)

SM solution

 $\phi_{z}^{J/\Psi \Phi}$ [rad]

Data favour the

0

 N_{bkq}

 1675 ± 43

 2002 ± 49

 2244 ± 51

 3442 ± 62

CKM picture in 10 years

G. Isidori – Theoretical Insights to Heavy Flavour Physics

LHCb upgrade

ICFA Seminar, CERN, Oct. 2011

Future prospects (a personal view)

"Minimalistic" list of key (quark-) flavour-physics observables:

- γ from tree (B \rightarrow DK, ...)
- |V_{ub}| from exclusive semilept. B decays SuperB
- $B_{s,d} \rightarrow l^+ l^-$ (S)LHCb
- CPV in B_s mixing (S)LHCb
- $B \rightarrow K^{(*)} l^+ l^-, vv$ (S)LHCb, SuperB
- $B \rightarrow \tau v, \mu v$ SuperB
- $K \rightarrow \pi v v$ Kaon beams (NA62,...)
- CPV in charm (S)LHCb, SuperB

- The flavour sector offers a very rich complementary of the High Energy Frontier searches for NP - Recent LHCb results shown the potentialities of Flavor Physics at LHC, being unique for NP searches in B_s (also for B_d and Charm)

(S)LHCb

LHCb upgrade: history and schedule

The LHCb upgrade : a bit of history

- January 2007, Edinburgh Upgrade Workshop: choice of 40 MHz
- April 2008, Expression of Interest
- March 2011, Letter of Intent (baseline proposal) to LHCC Endorsement of physics case Review of proposed trigger concept (40 MHz)
- June 2011, Positive review of trigger concept LHCC endorses the LOI, green light for TDR (due in 2013) Intermediate document describing due early in 2012

A (very tentative) schedule for LHC/LHCb

2011-2012 LHCb data taking

2013-2014 LHC repair / LHCb maintenance, first infrastructures for upgrade

2015-2017 LHCb data taking

2018 LHC shutdown / LHCb upgrade installation

✓ LHCb Upgrade preparation

2011-2013 R&D, technological choices, TDRs preparation/approval

2013-2014 Requests for approval/Funding

2015-2018 Construction & installation

Spokesperson (P.Campana, LNF) at last CNS1, Firenze, Nov 2011