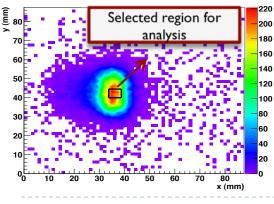


- Flavour physics at the SuperB factory is complementary to LHC for studying New Physics beyond the Standard Model in the b, c and τ sectors
- The SuperB detector is based on a reoptimization of the BaBar detector
 - The CsI(TI) crystals Electromagnetic Calorimiter (EMC) is divided in two parts:
 - Barrel
 - $\hfill\square$ Expected to survive SuperB radiation damage
 - Can sustain SuperB rates
 - Forward
 - SuperB radiation dose is a concern
 - Finer granularity and faster response are needed for SuperB rates

Crystal	CsI(TI)	LYSO (Ce)
Density (g/cm ³)	4.51	7.1
Radiation Legth (cm)	1.85	1.14
Moliére Radius (cm)	3.5	2.3
Decay Time (ns)	1220	45
Light Output (%) (wrt Nal(TI))	165	75

CsI(TI) partially substituted with Lutetium and Yittrium Orthosilicate (LYSO) crystals



Istituto Nazionale di Fisica Nucleare

A LYSO calorimeter for the SuperB factory

- LYSO calorimeter prototype:
 - 5x5 matrix of LYSO crystal (2.5x2.5x20 cm³)
 - Beam test at Laboratori Nazionali di Frascati with e⁻ beam (50-500 MeV)
 - Silicon detector used to measure the incoming particles position
 - Beam energy spread evaluated from data by using also events with more than one e⁻ per spill

