C. de La Taille D.A.T. IN2P3

Elba round table

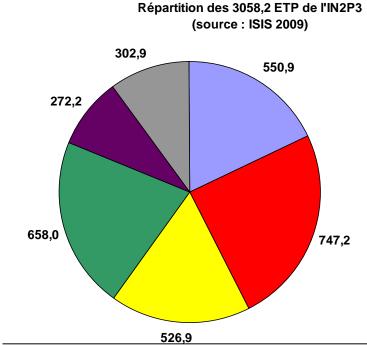
IN2P3, an institute in CNRS

· CNRS:

- Under the authority of the ministry for higher education and research
- 11 500 researchers, 14 200 ITA
- 3 G€ annual budget
- 1 200 laboratories
- 10 thematic institutes, including 2 national institutes: IN2P3 and INSU

IN2P3:

- 2 400 CNRS staff, researchers, engineers and technicians; 600 university and other staff
- Running budget from CNRS : 40 M€
- 24 laboratories and platforms40 large international projects
- Similar (but independent) organization for CEA and CEA/IRFU



IN2P3 missions

- Promote and federate research in nuclear physics, particle physics, astroparticle physics
- Coordinate the programs in the name of CNRS and Universities, in partnership with CEA
- Explore
 - Particle physics
 - Nuclear and Hadronic physics
 - Astroparticules and Neutrinos
 - Nuclear energy and waste management
 - Research and Development of Accelerators
 - Instrumentation (new)
 - Computing grids
- Bring its competence
 - to other scientific domains
 - to contribute solving societal problems
- Participate to the formation of students (University, grandes écoles)
- Help the companies benefit from its expertise

IN2P3/IRFU strategy

Prospective 2012-2020 being performed this year

- Reports from 20 working groups : bottom-up approach
- Community meeting last april (400 participants)
- Conclusions by the end of the year
- Material for European Strategy, NuPEC, APEC...

Funding of large projects pluriannual at national level (TGIR)

- LHC upgrades, computing cenre, GANIL, XFEL, VIRGO, HESS, CTA...
- In the framework of international commitments
- Prioritization of IN2P3/IRFU projects
- Competition with other fields (photon, neutron science...)
- Collaboration with other fields (interdisciplinarity)
- Explaining benefits to society...

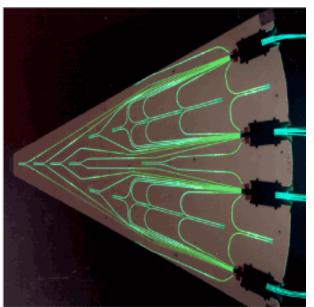
Importance of instrumentation and detector R&D

- Better detectors => better physics
- Numerous examples at this conference (pixels, SiPMs...)

Instrumentation R&D at IN2P3

R&D instrumentation

- Photodetectors (PM, SiPM, MCCP, TOF...)
- Gaseous detectors (RPCs, Micromegas, TPCs...)
- Semiconductor detectors (Ge, Si, MAPS...)
- Bolometers (CMB, Edelweiss, 2Beta...)
- Calorimeters (imaging...)
- Radiodetection (MHz, GHz...)
- Microelectronics (ASICs)
- DAQ (NARVAL, FASTER, xTCA, ...)
- R&D mechanics (cooling, composites...)


R&D organization

- Transversal thematic networks
- Target next generation experiments
- Centralized funding

Technology platforms

Example : microelectronics poles

Structuration of detector R&D

Build some expert groups/labs

- Matrix [LAB x detector] size 20x10 !
- Team around leading expert
- Avoid/minimize duplication, reinventing the wheel/charge preamp

Develop common tools for design and collaboration

- Mechanics (Catia, ANSYS), electronics (Cadence)...
- Networking, thematic schools

Control the funding for R&D

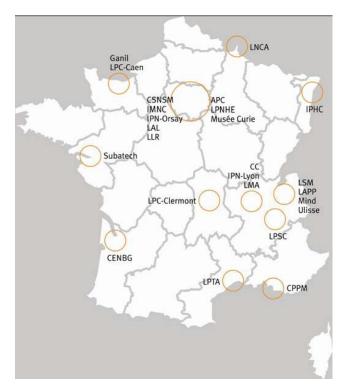
- Several new funding entities in France (ANR, labex...)
- IN2P3 main source for manpower and funding

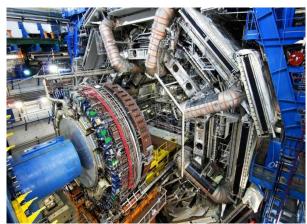
Aim at next generation of experiments

- Not too generic an R&D
- No underground project subsidizing

Backup

22 may 2012 CdLT Elba conference 7




Laboratories structured in a network

- sharing and optimisation of the ressources and competences of the Institute
 - large laboratories, infrastructures or technological platforms in limited number

Organization by projects

- Large International collaborations (LHC, GANIL, FAIR, HESS....
- Custom detectors
- Dedicated readout electronics/mechanics
 - High number of channels
 - Low power
 - Low material
 - High speed
 - High accuracy
 - · Radiation tolerance
 - ...
- pushing the state of the Art

