
The CMS Tracker Alignment in p-p Collisions

A. Bhardwaj & K. Ranjan (on behalf of CMS Collaboration)

The CMS Tracker

All Silicon

▶1440 Si pixel modules

- 15148 Si strip modules
 - 24244 strip sensors in total
 - Strips generally measure r- ϕ direction

Alignment Challenge: 200k parameters (taking into account that sensors are not flat)

The Track Based Alignment Using Millipede II Algorithm Global Fit Approach

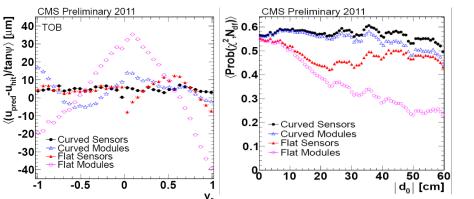
Simultaneous fit of all parameters: shifts, track parameters etc.

Minimise Sum of Squares of Residuals:

$$\chi^{2}(p,q) = \sum_{j}^{\text{tracks measurements}} \left(\frac{m_{ij} - f_{ij}(p,q_{j})}{\sigma_{ij}}\right)^{2}$$

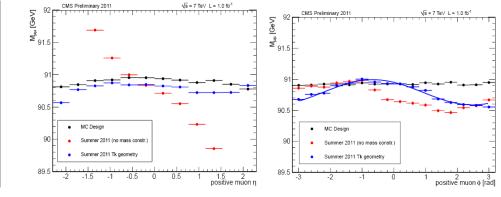
- Provides alignment solution in one step: All correlations from tracks are taken into account
 Features: Computing Aspects
- Optimized for speed
 - Iterative MINRES, CPU intense parts parallelized using OpenMP

Stand alone Fortran program, Reading binary input


Optimized for memory space

Alignment Strategy & Results During 2011 pp Collision (1fb⁻¹)

Determination of Module Surface Deformation


- Sensor surfaces can be bowed
- Kink within two daisy chained sensors
 - Typical kink is 2 α^{δ} = 1.6 mrad
 - Larger effect than sensor bow
- Alignment: Determination of "bows" & "kinks"
- > Residual *du*, track slope *tan* ψ :
 - map residual perpendicular to sensor, validated by dw = du/ tan ψ

Comparison of alignments with different module shape parameterizations

The Weak Mode Issue

- Minimising residuals can be insensitive to certain global distortions
- These weak modes might affect track parameters significantly
- Re-parametrise muon tracks by common fit object: 9 instead of 2x5 parameters
- Add Z mass as virtual measurement in alignment contributes in removing the twist dependence

2011 CMS Tracker Alignment has provided desired precision for physics analysis discoveries