Significantly Improved Lifetime of MCP-PMTs

Albert Lehmann (Universität Erlangen-Nürnberg) on behalf of the PANDA Cherenkov group

Motivation

- Pros and cons of MCP-PMTs
- Approaches to increase lifetime
- Results of aging tests
- Summary and outlook

Antiproton Facility HESR at FAIR

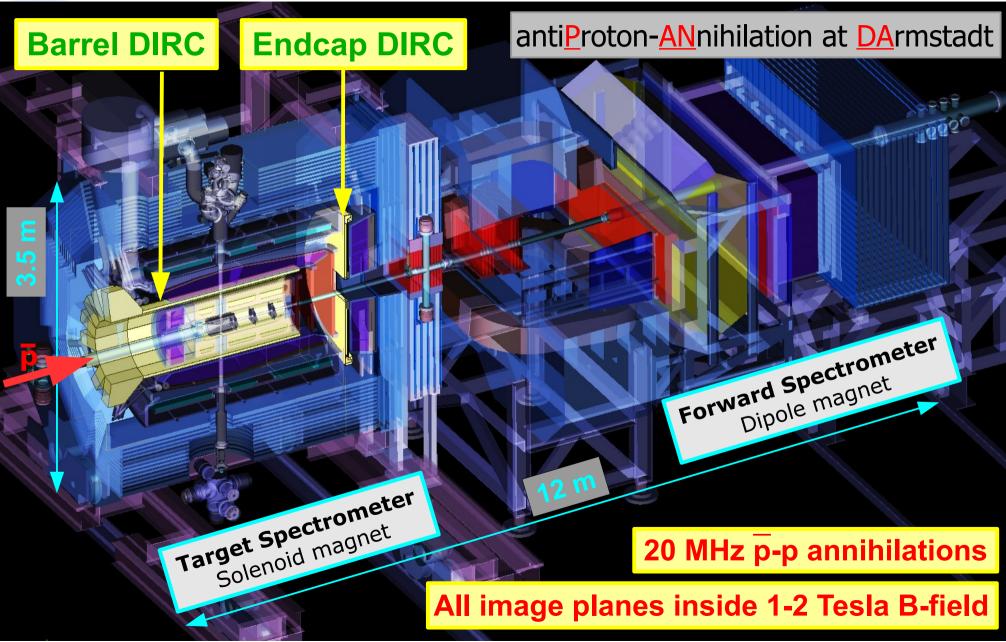
protons (up to 30 GeV/c) **antiprotons** (up to 15 GeV/c)

HESR and PANDA

- stored antiprotons: ~ 10¹¹
- momentum resolution: ~ 10⁻⁵
- Iuminosity: ~ 2.10³² cm⁻²s⁻¹

Albert Lenmann

12" Pisa Meeting on Advanced Detectors -- May 20 - 26, 2012


PANDA

HESR

CR/RESR

p-Target

PANDA Detector at FAIR

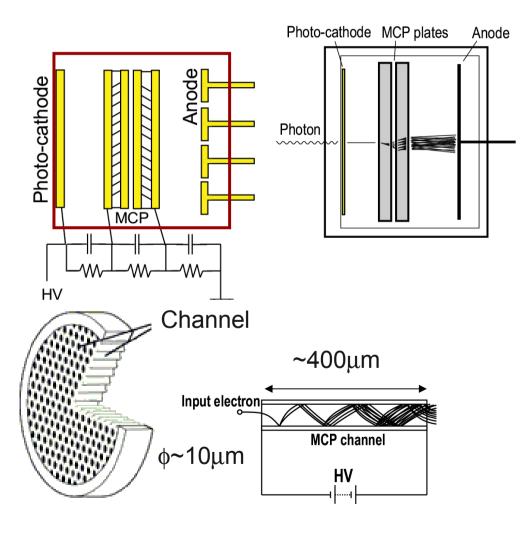
Albert Lehmann

Challenges to Photon Sensors

Good geometrical resolution over a large surface

- multi-pixel sensors with ~5x5 mm² anodes
- Single photon detection inside B-field
 - high gain (> $5*10^5$) in up to 2 Tesla
- Time resolution for ToP and/or dispersion correction
 - very good time resolution of < 100 ps for single photons
- Few photons per track
 - high detection efficiency η = QE * CE * GE
 [QE = quantum efficiency; CE = collection efficiency; GE = geometrical efficiency]
 - low dark count rate
- Photon rates in the MHz regime
 - high rate capability with rates of several MHz/cm²
 - long lifetime with integrated anode charge of 1-5 C/cm²/y)

Albert Lehmann


multi-anode photomultipliers (MaPMTs)

- (more or less) ruled out by magnetic field
- Geiger-mode avalanche photo diodes (SiPMs)
 - huge noise is very problematic
- micro-channel plate photomultipliers (MCP-PMTs)
 - preferred choice for PANDA DIRC
 - but problems with rate capability and **aging** (mainly QE)

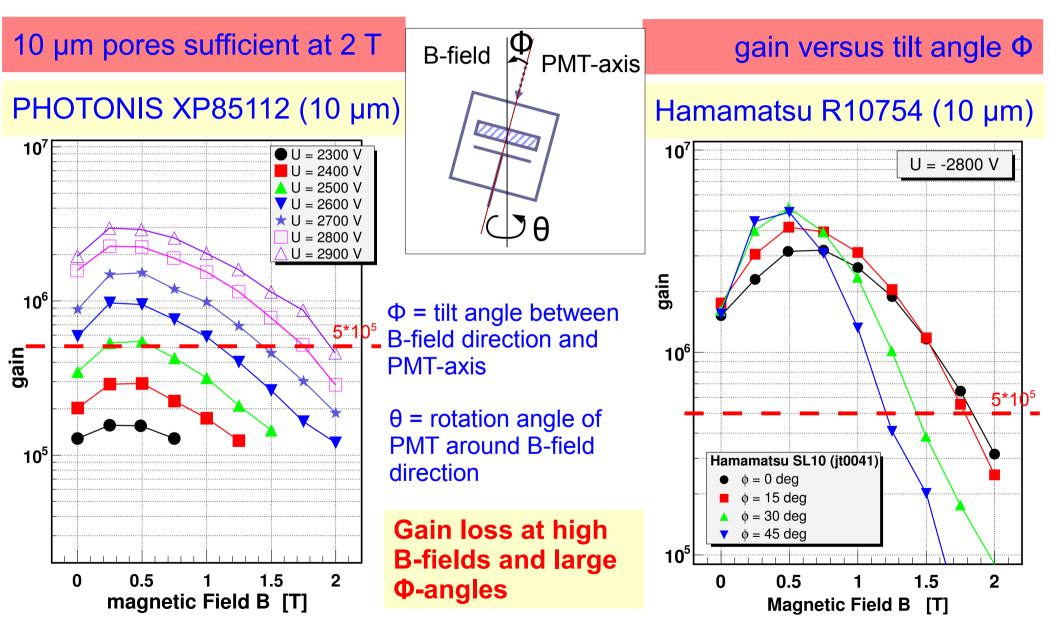
There was no ideal sensor for the PANDA DIRCs !

Microchannel-Plate PMT

electron multiplication in glass capillaries (\varnothing \approx 10-25 $\mu m)$

- usable in high magnetic fields
 - high gain:
 - >10⁶ with 2 MCP stages
 - single photon sensitivity
- very fast time response:
 - signal rise time = 0.3 1.0 ns
 - TTS < 50 ps
- Iow dark count rate
- quantum efficiency comparable to that of standard vacuum PMTs
- multi-anode PMTs available
- caveats:
 - lifetime (QE drops)
 - price

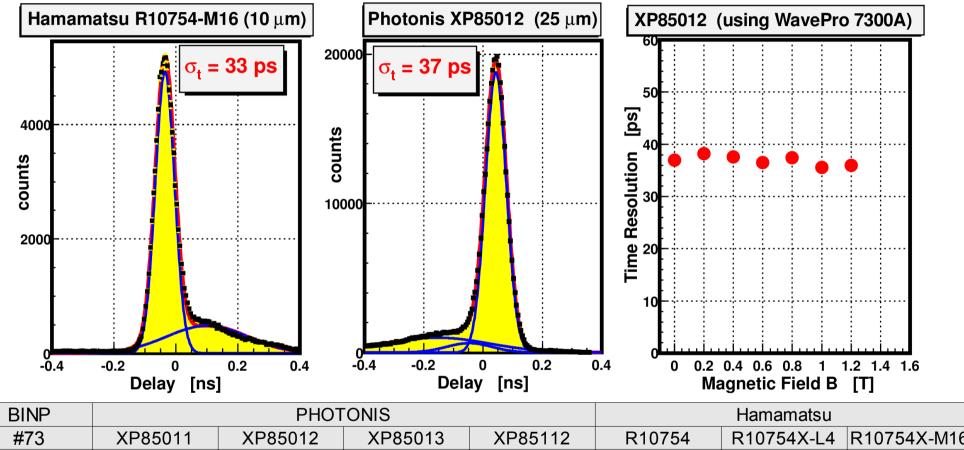
Investigated MCP-PMTs


	BINP	PHOTONIS			Hamamatsu		
		XP85011	XP85013	XP85012	XP85112	R10754-00-L4	R10754X-01-M16
pore size (µm)	7	25	25	25	10	10	10
number of pixels	1	8x8	8x8	8x8	8x8	4x1	4x4
active area (mm ²)	9² π	51x51	53x53	53x53	53x53	22x22	22x22
total area (mm²)	15.5² π	71x71	59x59	59x59	59x59	27.5x27.5	27.5x27.5
geom. efficiency (%)	36	52	81	81	81	61	61
photo cathode	Multi-alkali		Bi-alkali			Multi-alkali	
peak Q.E.	22% @ 480 nm			20% @ 380 nm	22% @ 380 nm	20% @ 300 nm	21% @ 375 nm
comments	better vacuum, new cathode		larger active area ratio	better vacuum, polished surfaces	better vacuum, ALD surfaces		protection layer between MCPs
							the second se

usually comparison of several identical models of MCP-PMTs

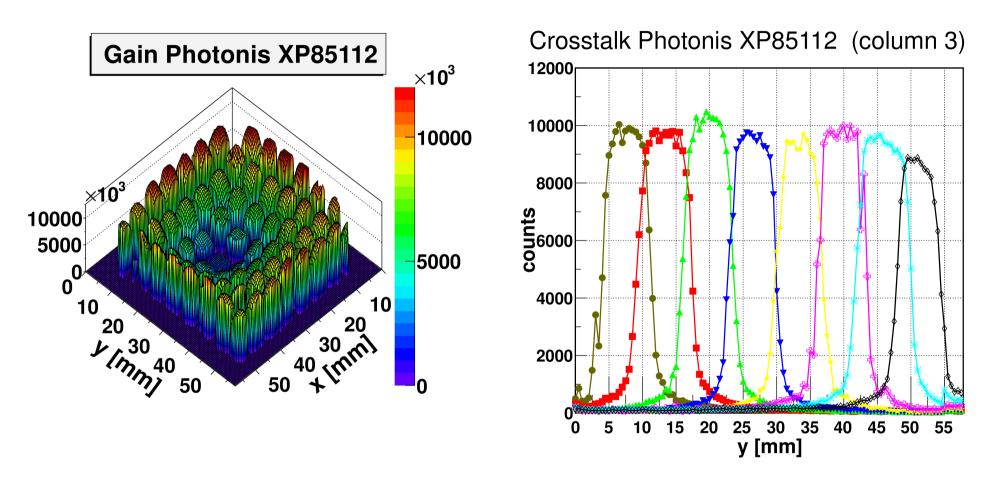
here: focus on new PHOTONIS XP85112 ; Hamamatsu R10754X-M16 and new BINP

Albert Lehmann



Albert Lehmann

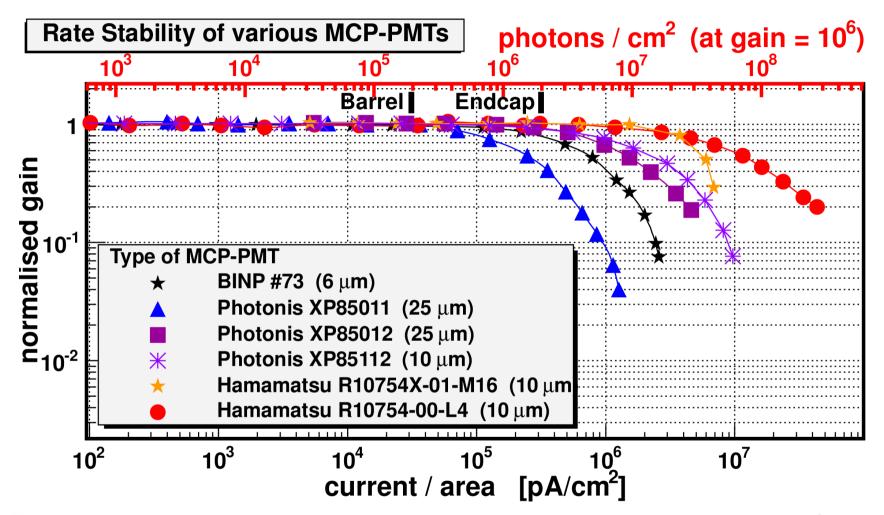
Single Photon Time Resolution


Amplifier Ortec FTA820 (x200; 350 MHz) --- Discriminator Philips Scientific 705

#73	XP85011	XP85012	XP85013	XP85112	R10754	R10754X-L4	R10754X-M16
6 µm	25 µm	25 µm	25 µm	10 µm	10 µm	10 µm	10 µm
27 ps	49 ps	37 ps	51 ps	36 ps	32 ps	31 ps	33 ps

time resolution of all MCP-PMTs 50 ps and better no dependence on the B-field

Gain and Crosstalk of XP85112

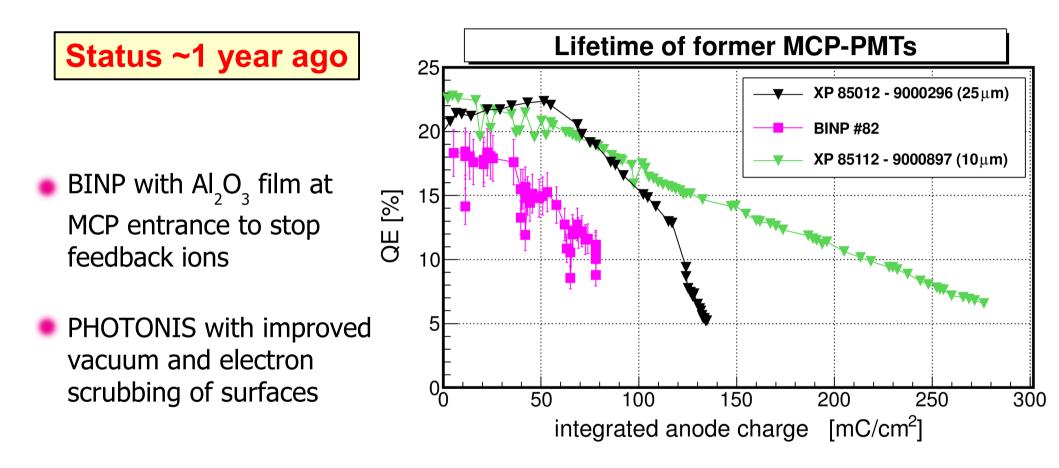


substantial gain variations between pixels (in center!)

- 50% crosstalk level extends ~1 mm into adjacent pixel
- but no long crosstalk tails

Albert Lehmann

Rate Capability



most MCP-PMTs show stable operation to ~200-300 kHz/cm² single photons (at gain 10⁶)

R10754X and XP85112 are suitable for both PANDA DIRCs

Albert Lehmann

Lifetime of former MCP-PMTs

Quantum efficiency reduced by 50% or more at <200 mC/cm²
 By far not sufficient for PANDA

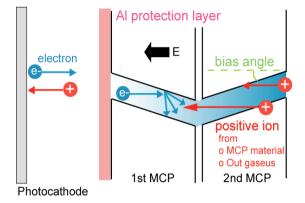
Albert Lehmann

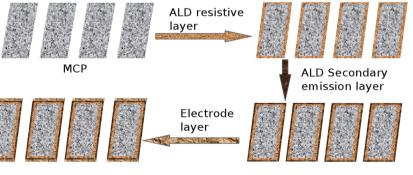
Rate Estimates for PANDA

- rate capability and lifetime are the most critical issues for the application of MCP-PMTs in any high-rate particle physics experiment
 - expected rates and anode charges of the PANDA DIRCs:

	total rate	anode rate (after Q.E.)	integrated anode charge		
	[MHz/cm ²]	[MHz/cm ²]	[C/cm ² /year] at 10 ⁶ gain		
Barrel DIRC					
at end of radiator	60	5.6	28		
at readout plane	1.7	0.16	0.8		
Endcap DIRC					
TOP	19	1.9	9.6		
focussing	7.5	0.76	3.8		

• Endcap DIRC with 5-10x higher photon rate than Barrel DIRC \rightarrow very challenging


Albert Lehmann


Approaches to Increase Lifetime

- Protection layer
 - In front of first MCP layer (older BINP and Hamamatsu)
 - disadvantage: reduction of collection efficiency
 - Between MCP layers (new Hamamatsu)
 - anode region is hermetically sealed from photo cathode region [NIM A629 (2011) 111]
- Improved vacuum + treatment of MCP surfaces
 - Electron scrubbing (older PHOTONIS and new BINP)
 - Atomic layer deposition (new PHOTONIS
- New photo cathode [JINST 6 C12026 (2011)]
 - $Na_2KSb(Cs) + Cs_3Sb$ (new BINP)
 - disadvantage: significantly higher dark count rate

Albert Lehmann

12th Pisa Meeting on Advanced Detectors -- May 20 - 26, 2012

[NIM A639 (2011) 148]

Aging of Several MCP-PMTs

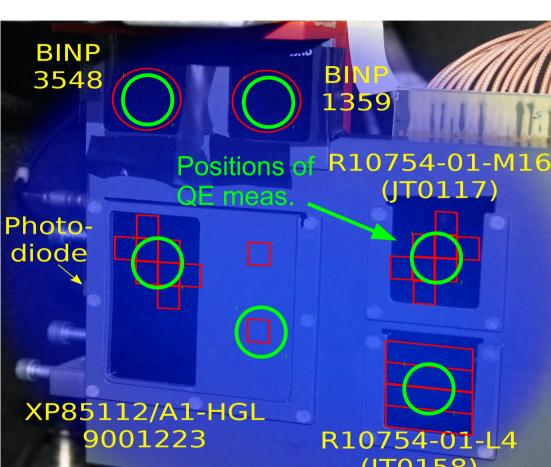
- **<u>Problem</u>**: The few aging tests existing were done in very different environments \rightarrow results are rather difficult to compare
- <u>Goal</u>: measure aging behavior for all currently available lifetimeenhanced MCP-PMTs in same environment

• Simultaneous illumination with common light source \rightarrow same rate

- MCP-PMTs included in aging tests:
 - 2x BINP
 - improved vacuum and scrubbed surfaces
 - new photo cathode
 - 2x Hamamatsu R10754X (L4 and M16)
 - protection layer between 1st and 2nd MCP
 - 1x PHOTONIS XP85112
 - ALD surfaces
 - surface half covered during illumination

Albert Lehmann

Measurement of MCP Lifetime


Continuous illumination

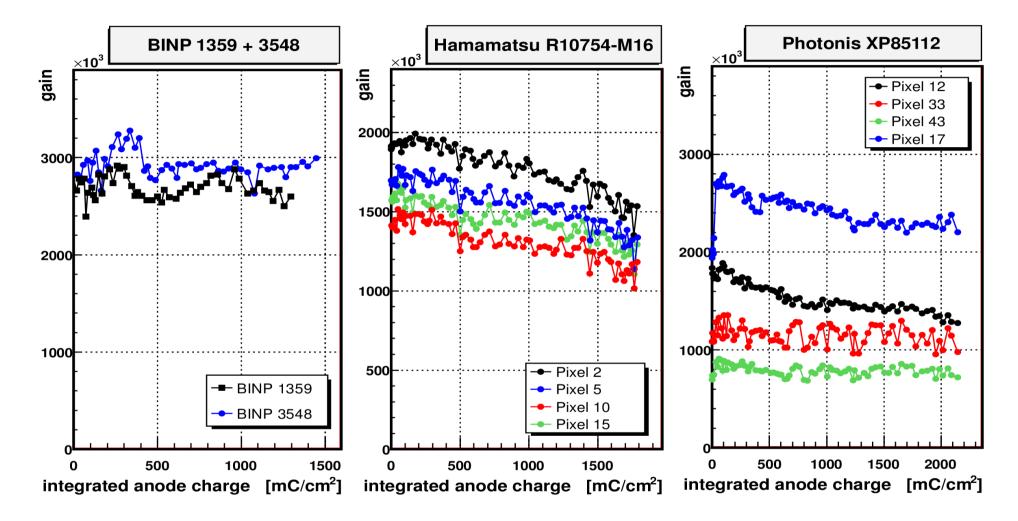
 460 nm LED at 0.25 to 1 MHz rate attenuated to single photon level
 → 3 to 14 mC/cm²/day

Permanent monitoring

 MCP pulse heights and LED light intensity

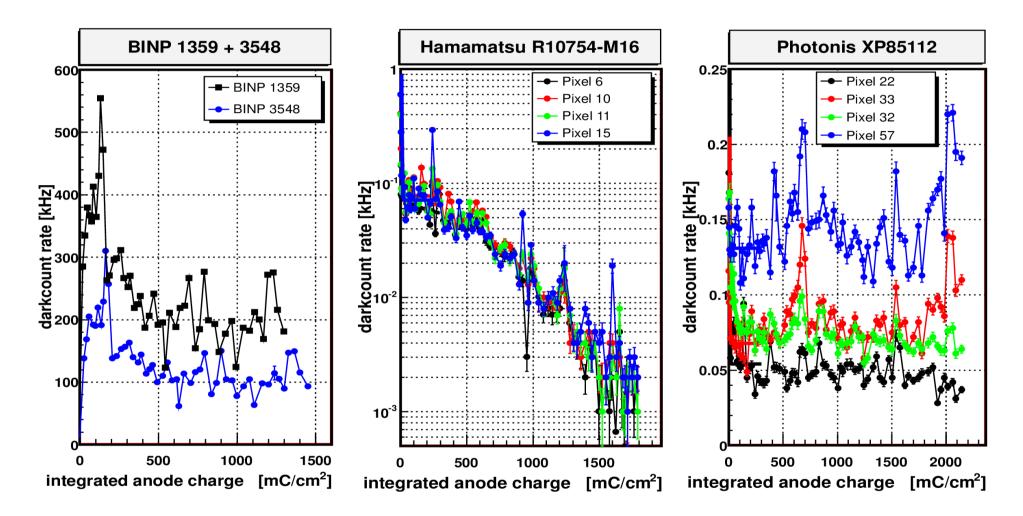
Q.E. measurements

- 300–800 nm wavelength band with monochromator $\Delta \lambda = 1$ nm
- every few days: wavelength scan
- every few weeks: complete surface scan


Albert Lehmann

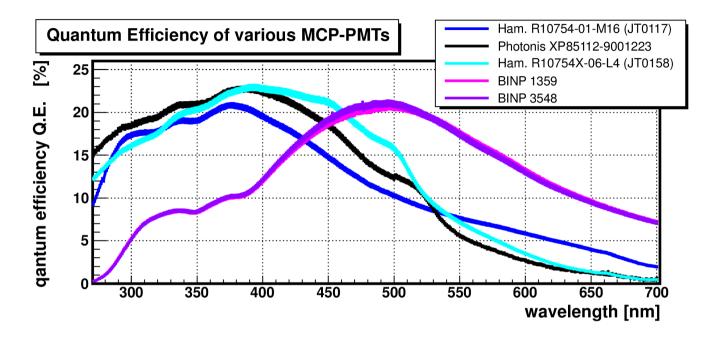
	Hamamatsu R10754X-01-M16	PHOTONIS XP85112/A1-HGL	BINP 1359	BINP 3548
Integrated Anode Charge (May 16 th) [mC/cm ²]	1789	2143	1303	1451
Max applied current per anode [nA]	45.3	56	315	346
Specified max. DC anode cur. [nA]	100	47 (64 Chans.) 94 (32 Chans.)	1000	1000
Max Differential Charge [mC/cm²/d]	14.1	13.4	10.6	11.7
Anode area per pixel (cm ²)	0.32	0.36	2.54	2.54
Number of measurements	73	73	50	50
Measured Channels	8	8 + 2 (unexposed) + MCP-Out	1	1
QE-Scans	7	7	6	5
Illuminated area	100%	50%	100%	100%
Applied voltage using voltage divider (V)	3300	2050	3100 (+100)	3000 (+100)

Albert Lehmann


Gain vs. Integrated Anode Charge

Only moderate gain changes This was different in the former MCP-PMTs !

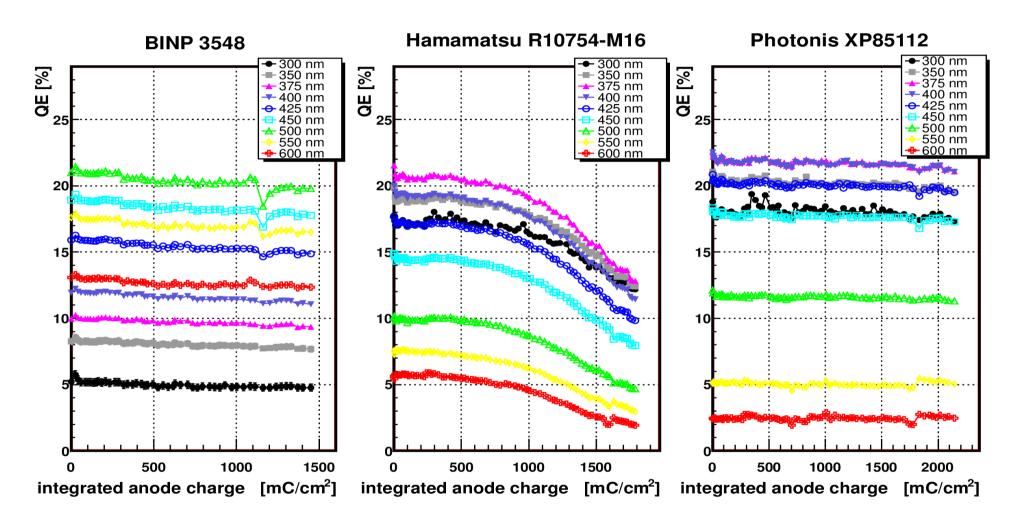
Albert Lehmann


Darkcount vs. Anode Charge

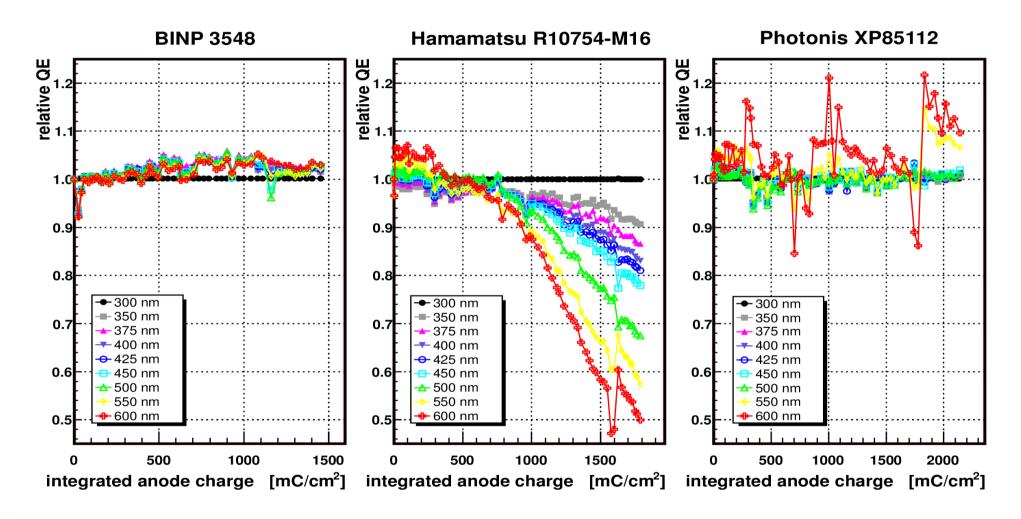
Only few changes of darkcount rate for BINP and PHOTONIS Big reduction in Hamamatsu R10754X

Albert Lehmann

Quantum efficiency

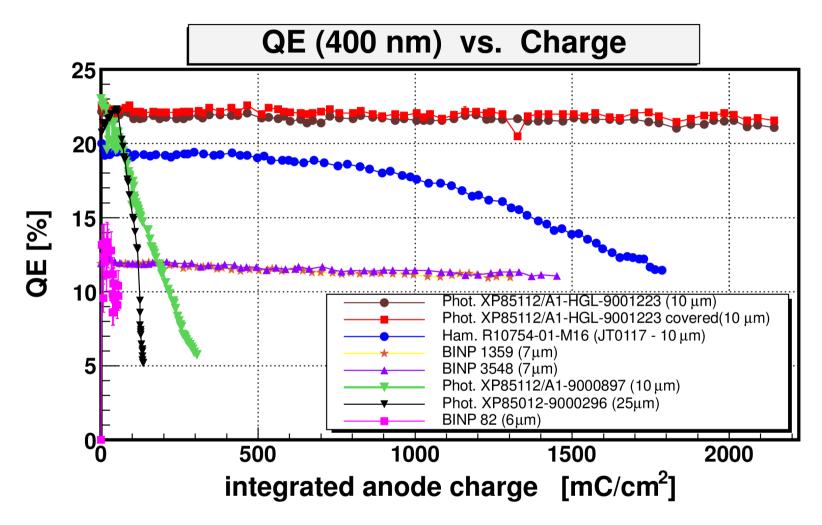

MCP-PMT	Peak Q.E. (nm)	Photo cathode
XP85112/A1 ⁻ HGL (1223)	390	bi-alkali
R10754X-01-M16	375	multi-alkali
R10754X-06-L4	390	bi-alkali
BINP 1359	495	$Na_{2}KSb(Cs)+Cs_{3}Sb$
BINP 3548	495	$Na_{2}KSb(Cs)+Cs_{3}Sb$

Q.E. measured at 372 nm


Q.E.(λ) vs. Integral Anode Charge

Hamamatsu: Q.E. drops significantly above ~1 C/cm2 BINP and PHOTONIS: few or no Q.E. drop, resp.

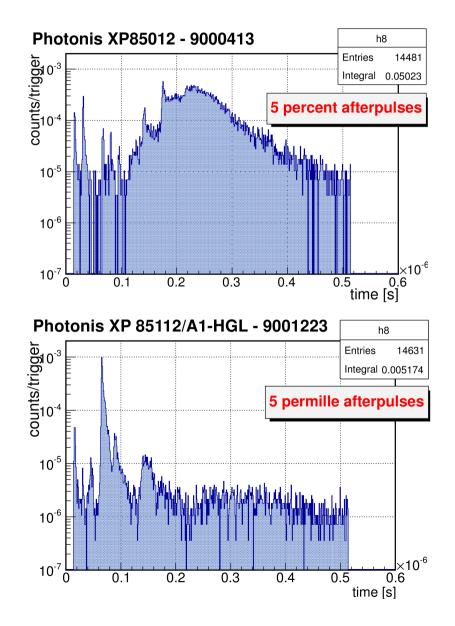
Albert Lehmann


E Relative Q.E.(λ) vs. Anode Charge

Ham. R10754X-M16: longer wavelengths drop faster than short ones BINP 3548 and PHOTONIS XP85112: no relative Q.E. degradation

Albert Lehmann

Lifetime of Different MCP-PMTs


older BINP and PHOTONIS MCP-PMTs: rapid Q.E. degradation

new PHOTONIS XP85112: still no Q.E. drop at >2 C/cm²

Albert Lehmann

- How to guess MCP-lifetime before (and during) aging?
- Measure fraction of pulses (p.e.) followed by an afterpulse (ion)
 - The higher the fraction of afterpulses the higher the amount of restgas inside tube
 - Time delay spectrum may allow to guess the type of ions
- New MCP-PMT with ALD surfaces shows lowest afterpulsing.
- More studies necessary!

Summary and Outlook

- Latest MCP-PMT models fulfill most requirements of PANDA DIRC.
- Significant increase of lifetime of MCP-PMTs due to the recent improvements in design
 - huge step forward !
 - equipping the PANDA DIRCs with MCP-PMTs is in reach

ALD technique appears very promising

- Further improvements could possibly come with
 - modified photo cathodes (see BINP)
 - MCP materials with less outgassing (e.g., borsilicate glass instead of lead glass)