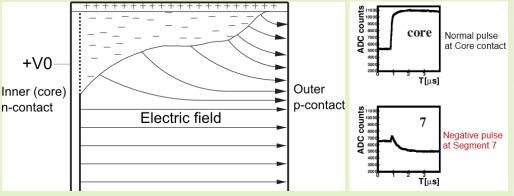


Bulk and Surface Effects in Segmented High-Purity Germanium Detectors



I. Abt, A. Caldwell, B. Dönmez, S. Irlbeck, B. Majorovits, O. Volynets*

+V0 Inner (core) n-contact

Surface effects

Mobility, μ , relates velocity of charge carriers, v(r), and electric field, E(r): $\boldsymbol{v}(r) = \boldsymbol{\mu} \cdot \boldsymbol{E}(r).$ Mobility is a *tensor* \Rightarrow charges do not drift *radially* \Rightarrow non-flat occupancy patterns seen in segments.

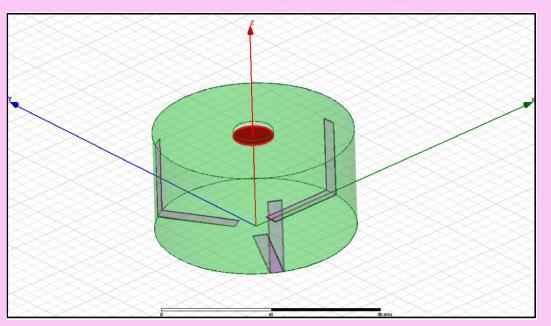
Application: fast determination of crystallographic axes using simulated occupancy patterns and comparison to the measured patterns.

Drifting charges may be trapped close to the surface (inactive layers) \Rightarrow *strange pulses* seen on detector electrodes.

A new test stand, GALATEA, was designed and commissioned to study such effects.

Key feature: direct proximity of a radioactive source to the detector

Milestones:


- Cooling system
- Vacuum conditions
- Movable source
- **Readout electronics**

Bulk and Surface Effects in Segmented High-Purity Germanium Detectors I. Abt, A. Caldwell, B. Dönmez, S. Irlbeck, B. Majorovits, <u>O. Volynets</u>*

Novel design of Segmented BEGe detectors

Milestones in progress:

- Electric field calculation for various geometries using ANSYS Maxwell
- Pulse shape simulation
- Position reconstruction algorithms

- Low capacitance:
 - low energy threshold
 - better energy resolution
- Use of segmentation for event topology reconstruction:
 - *Core* point-like *contact*: energy and timing information
 - **Segments**: position reconstruction using the so-called *mirror pulses*
- Possibility to distinguish between single- and multi-site events known for BEGes