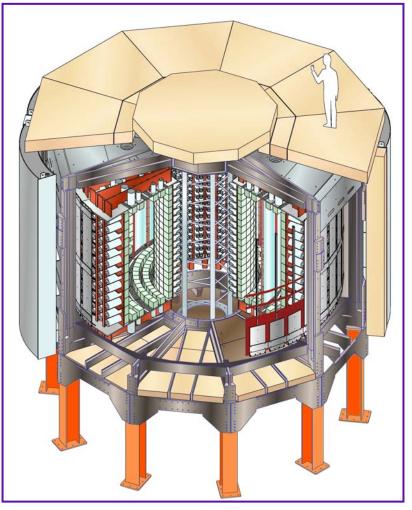
BiPo: A dedicated radiopurity detector for the SuperNEMO experiment

Héctor Gómez Maluenda on behalf of SuperNEMO Collaboration

Laboratoire de l'Accélérateur Linéaire

gomez@lal.in2p3.fr

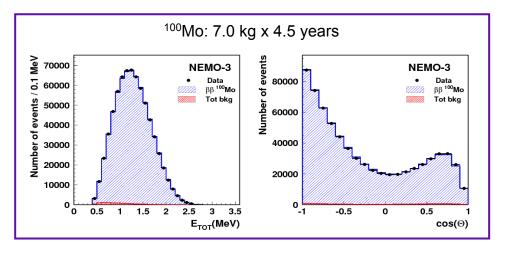
- NEMO 3 and SuperNEMO experiments.
 - Motivation: SuperNEMO $\beta\beta$ source foils radiopurity.
- The BiPo detector:
- BiPo 3 present status.
- Outlook and Prospects.
- Summary and Conclusions.



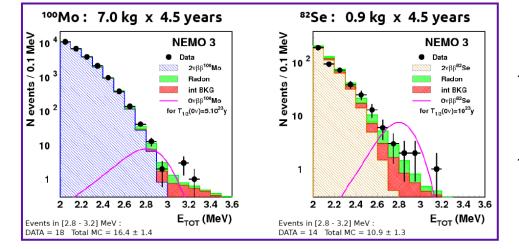
NEMO 3 and SuperNEMO

NEMO 3

- 10 kg of ββ isotopes:
 - 6.9 kg of ¹⁰⁰Mo, 0.9 kg of ⁸²Se
 - Also ¹³⁰Te, ¹¹⁶Cd, ¹⁵⁰Nd, ⁹⁶Zr and ⁴⁸Ca
- "Tracko calo" detection:
 - Tracking \rightarrow Geiger cells
 - Calorimetry → Polystyren + 3" & 5" PMTs
- Located at Modane Underground Laboratory
 - Depth ~4800 mwe
- Running from February 2003 until January 2011.
- Results on $T_{1/2}^{2\nu\beta\beta}$ and $T_{1/2}^{0\nu\beta\beta}$ for different isotopes.
- Complete background characterization.



NEMO 3 and SuperNEMO


NEMO 3 - Results

2νββ [Preliminary]

 $T_{1/2}^{2\nu\beta\beta}(^{100}Mo) = (7.16 \pm 0.01 \text{ (stat.)} \pm 0.54 \text{ (sys.)}) \ 10^{18} \text{ y}.$

 $T_{1/2}^{2\nu\beta\beta}(^{82}Se) = (9.6 \pm 0.1 \text{ (stat.)} \pm 1.0 \text{ (sys.)}) \ 10^{19} \text{ y}.$

Ονββ

$$\begin{split} T_{1/2}^{0\nu\beta\beta}(^{100}\text{Mo}, <m_{\nu}>) > 1.0 \ 10^{24} \ \text{y} \ (90\% \ \text{C.L.}). \\ <m_{\nu}> < 310 - 960 \ meV \\ T_{1/2}^{0\nu\beta\beta}(^{82}\text{Se}, <m_{\nu}>) > 3.2 \ 10^{23} \ \text{y} \ (90\% \ \text{C.L.}). \end{split}$$

<*m*_v> < 940 – 2600 *meV*

NEMO 3 and SuperNEMO

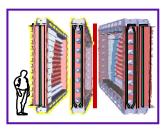
-

NEMO 3

 $^{100}\text{Mo},\,^{82}\text{Se}$ and others

7 kg 18 %

15 % FWHM @ 1 MeV


- ~ 100 µBq/kg
- < 300 µBq/kg
- $\sim 5 \text{ mBq/m}^3$

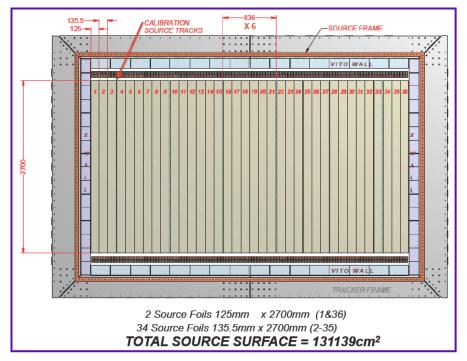
1-2 10²⁴ y

 $< m_{v} > < 0.3 - 0.9 \text{ eV}$

From NEMO 3 to SuperNEMO

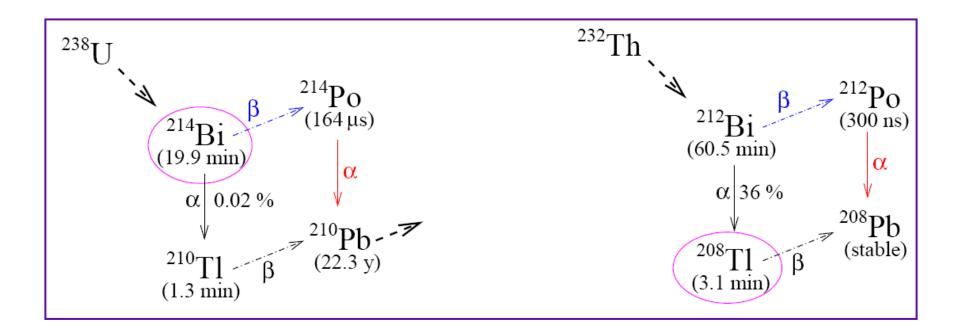
Isotope Mass Efficiency Energy Resolution ²⁰⁸TI source radiopurity ²¹⁴Bi source radiopurity Rn level Sensitivity

SuperNEMO

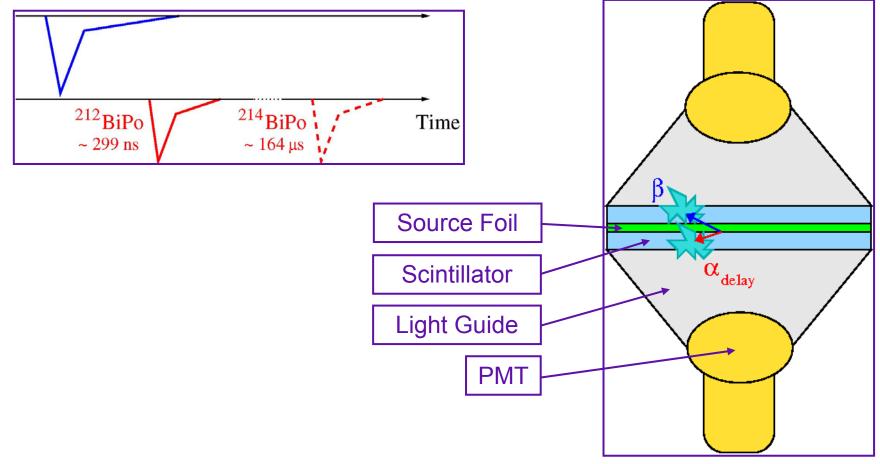

⁸²Se (¹⁵⁰Nd or ⁴⁸Ca?) ~100 kg 30 %
7 % FWHM @ 1 MeV
< 2 μBq/kg</p>
< 10 μBq/kg</p>
< 0.1 mBq/m³
1 10²⁶ y
<m,> < 0.04 – 0.1 eV</p>

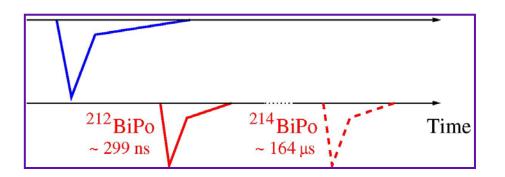
- SuperNEMO experiment will have ~100 kg of $\beta\beta$ emitter distributed in the so-called source foils.
- Sensitivity requirements limits the source foil contamination to:
 - < 2 μ**Bq/kg** in ²⁰⁸TI
 - < 10 μBq/kg in ²¹⁴Bi
- Most sensitive HPGe detectors ~50 μ Bq/kg for ²⁰⁸Tl.
- In addition:
 - Better to measure the source itself (particular geometry)
 - Non destructive measurement procedure

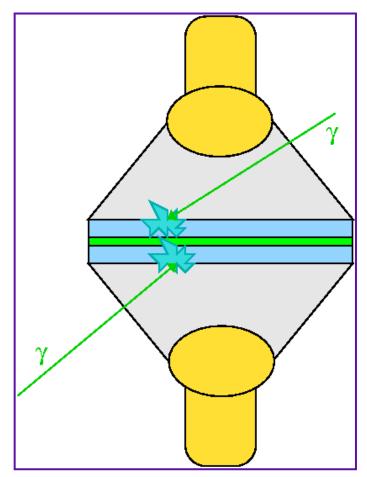
NECESSITY OF A DEDICATED DETECTOR



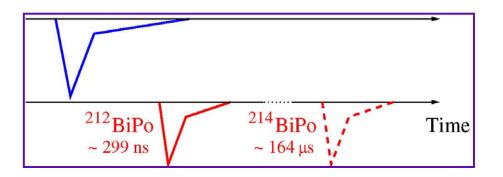
The BiPo detector: Detection Principle

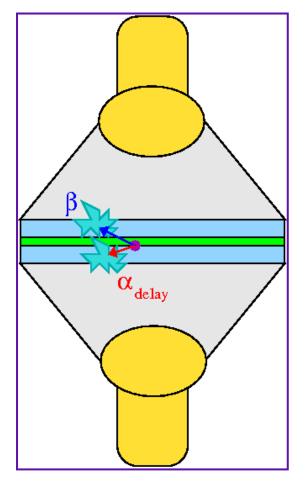

- BiPo is a dedicated detector for the measurements of ultra-low levels of contamination in ²⁰⁸Tl and ²¹⁴Bi present in the SuperNEMO source foils.
 - Detection principle \rightarrow BiPo $\beta \alpha$ delayed coincidence detection.


- BiPo is a dedicated detector for the measurements of ultra-low levels of contamination in ²⁰⁸TI and ²¹⁴Bi present in the SuperNEMO source foils.
 - Detection principle \rightarrow BiPo $\beta \alpha$ delayed coincidence detection.

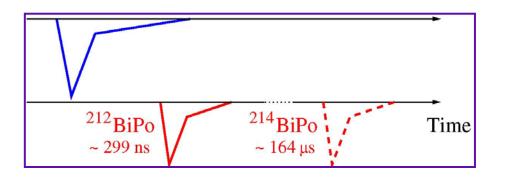


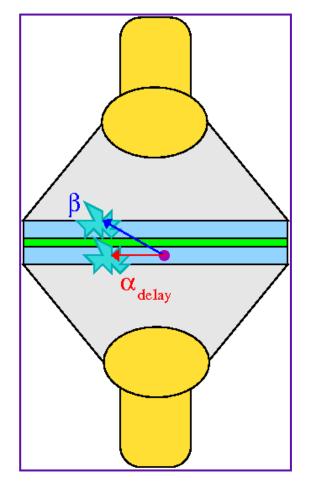
- BiPo is a dedicated detector for the measurements of ultra-low levels of contamination in ²⁰⁸TI and ²¹⁴Bi present in the SuperNEMO source foils.
 - Detection principle \rightarrow BiPo $\beta \alpha$ delayed coincidence detection.


- Background sources:
 - γ-induced random coincidences

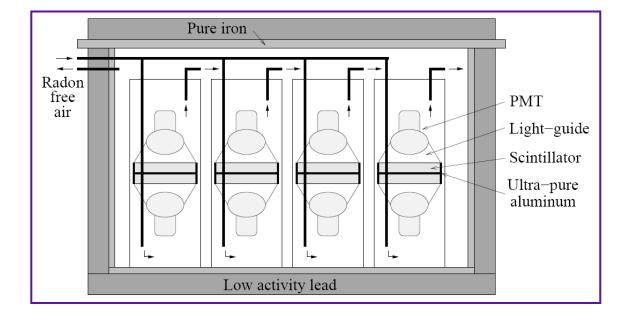


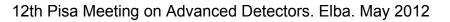
- BiPo is a dedicated detector for the measurements of ultra-low levels of contamination in ²⁰⁸TI and ²¹⁴Bi present in the SuperNEMO source foils.
 - Detection principle \rightarrow BiPo $\beta \alpha$ delayed coincidence detection.


- Background sources:
 - γ-induced random coincidences
 - Scintillator surface contamination
 - Radon contamination in the sensitive volume



- BiPo is a dedicated detector for the measurements of ultra-low levels of contamination in ²⁰⁸TI and ²¹⁴Bi present in the SuperNEMO source foils.
 - Detection principle \rightarrow BiPo $\beta \alpha$ delayed coincidence detection.


- Background sources:
 - γ-induced random coincidences
 - Scintillator surface contamination
 - Radon contamination in the sensitive volume
 - Scintillator bulk contamination

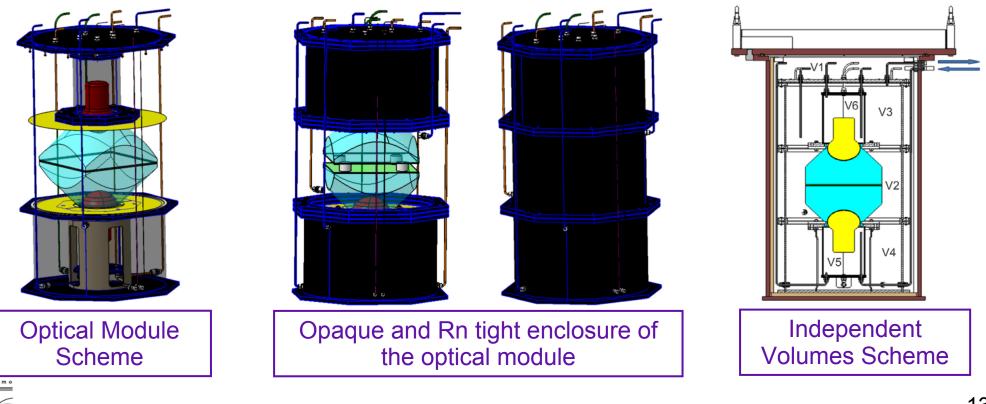

- BiPo prototypes have been really useful to fix different open questions and to validate the technology.
 - **BiPo 1**:
 - 20 modules
 - Face to face scintillators
 - Installed at LSM
 - DAQ tests
 - MatAcq digitizer board
 - Trigger modules
 - Analysis methods tests
 - Radiopurity of the scintillators

Detection principle tested with a calibrated *AI* foil between the scintillators

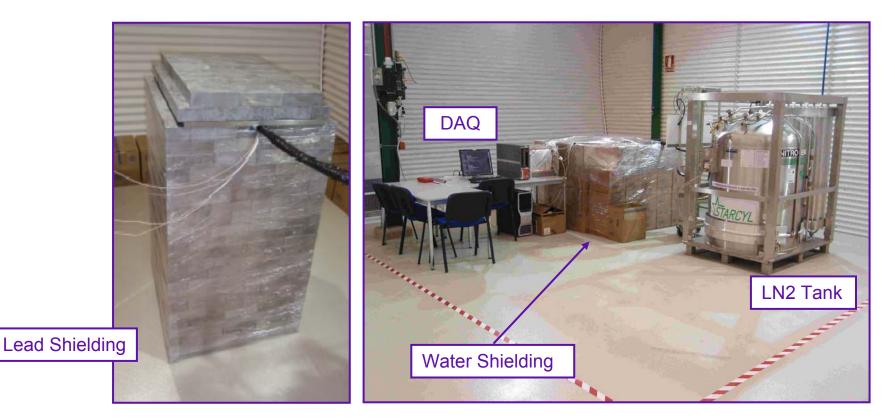
²⁰⁸*TI* contamination level of **1.5** μ *Bq/m*² of scintillator measured

NIM A 622 (2010) 120-128

- BiPo prototypes have been really useful to fix different open questions and to validate the technology.
 - **BiPo 1**:
 - 20 modules
 - Face to face scintillators
 - Installed at LSM
 - DAQ tests
 - MatAcq digitizer board
 - Trigger modules
 - Analysis methods tests
 - Radiopurity of the scintillators

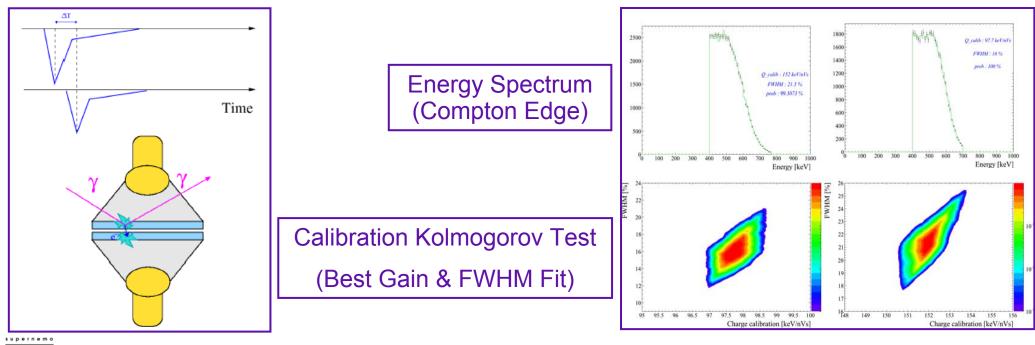


Detection principle tested with a calibrated *AI* foil between the scintillators ²⁰⁸*TI* contamination level of 1.5 μ Bq/m² of scintillator measured *NIM A 622 (2010) 120-128*



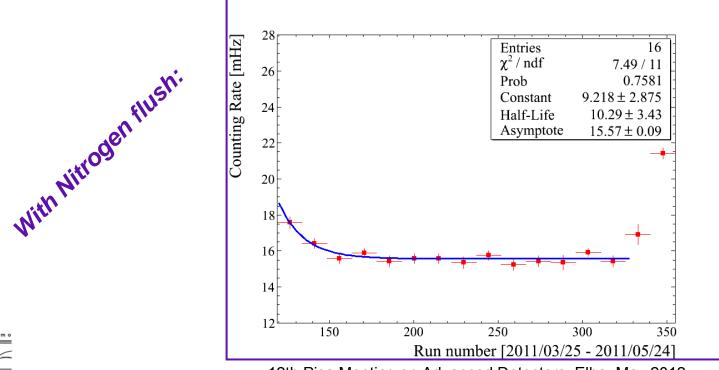
- BiPo prototypes have been really useful to fix different open questions and to validate the technology.
 - BiPo 3 prototype:
 - 1 module previous to the final setup.
 - Installed @ Canfranc Underground Laboratory (Depth ~ 2500 mwe).

- BiPo prototypes have been really useful to fix different open questions and to validate the technology.
 - BiPo 3 prototype:
 - 1 module previous to the final setup.
 - Installed @ Canfranc Underground Laboratory (Depth ~ 2500 mwe).



- BiPo 3 prototype:
 - 1 module previous to the final setup.
 - Installed @ Canfranc Underground Laboratory (Depth ~ 2500 mwe).

→ How low can we go in terms of Rn level and Counting Rate?


- Calibrations (⁵⁴Mn and ²²Na) for energy, resolution and timing
- Counting Rate monitoring
- BiPo events analysis

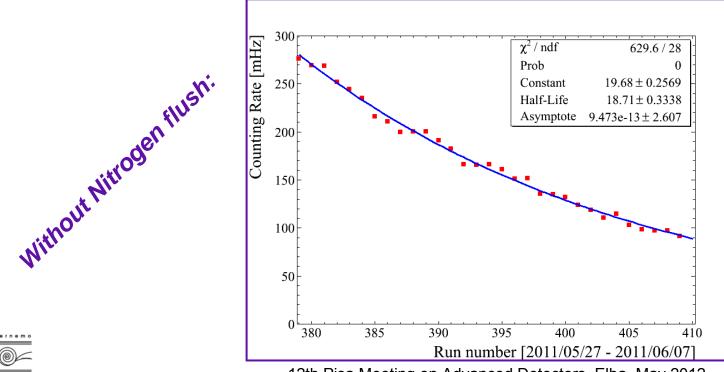
- BiPo 3 prototype:
 - 1 module previous to the final setup.
 - Installed @ Canfranc Underground Laboratory (Depth ~ 2500 mwe).

→ How low can we go in terms of Rn level and Counting Rate?

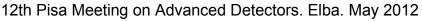
- Calibrations (⁵⁴Mn and ²²Na) for energy, resolution and timing
- Counting Rate monitoring
- BiPo events analysis

• Quite stable

Dependance with Rn concentration

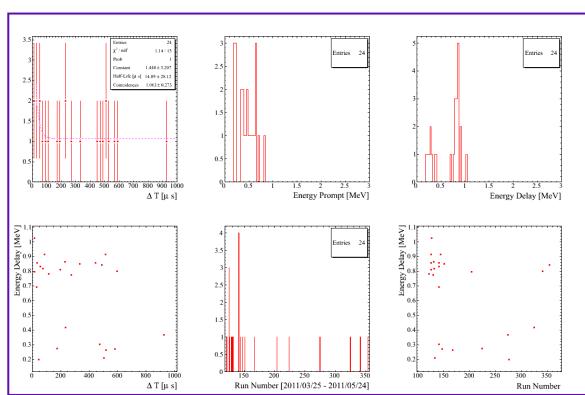


- BiPo 3 prototype:
 - 1 module previous to the final setup.
 - Installed @ Canfranc Underground Laboratory (Depth ~ 2500 mwe).


→ How low can we go in terms of Rn level and Counting Rate?

- Calibrations (⁵⁴Mn and ²²Na) for energy, resolution and timing
- Counting Rate monitoring
- BiPo events analysis

- Decay rate
- $T_{1/2} \sim 4.7 \pm 0.1$ days
- Rn detection



- BiPo 3 prototype:
 - 1 module previous to the final setup.
 - Installed @ Canfranc Underground Laboratory (Depth ~ 2500 mwe).

→ How low can we go in terms of Rn level and Counting Rate?

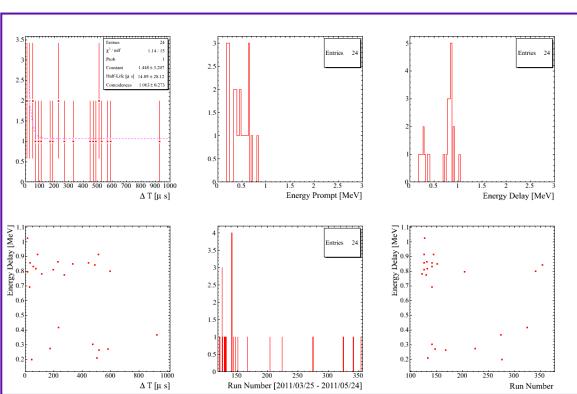
- Calibrations (⁵⁴Mn and ²²Na) for energy, resolution and timing
- Counting Rate monitoring
- BiPo events analysis
- Data from one candidate:
 - •Prompt energy (e⁻)
 - •Delay energy (α)
 - •∆t
- Rate evolution
 - Assure is constant

- BiPo 3 prototype:
 - 1 module previous to the final setup.
 - Installed @ Canfranc Underground Laboratory (Depth ~ 2500 mwe).

→ How low can we go in terms of Rn level and Counting Rate?

- Calibrations (⁵⁴Mn and ²²Na) for energy, resolution and timing
- Counting Rate monitoring
- BiPo events analysis

• *Results* after ~60 days data taking:

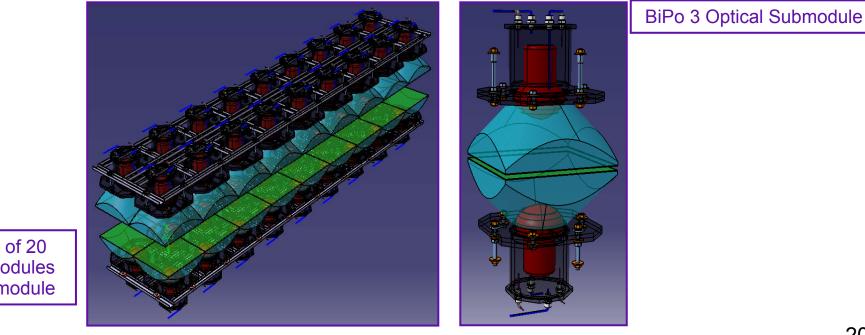

²⁰⁸TI:

```
A (^{208}TI) < 5.45 \muBq/m<sup>2</sup> scint @ 90% C.L.
```

²¹⁴Bi:

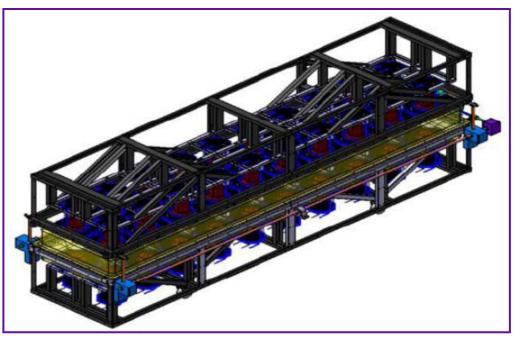
```
0.6 < A (^{214}Bi) = 5.3 < 23 \ \mu Bq/m^2 \ scint
```

PROMISING RESULTS



Final setup: BiPo 3 detector

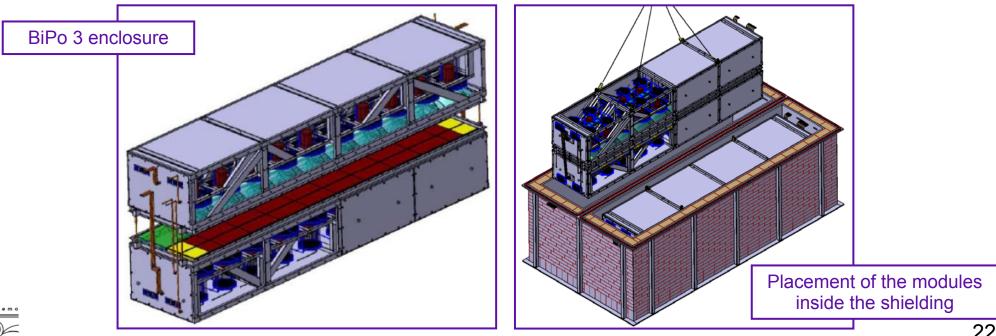
- Prototypes have shown that required sensitivity levels could be reachable with the face to face detector approximation.
- Main features:
 - 2 modules detector \rightarrow Possibility to measure 8 SuperNEMO source foils simultaneously
 - 20 30x30 cm² optical sub-modules in each module
 - 3.6 m² of sensitive surface
 - 2 mm thick scintillator plates
 - Light guide geometry optimized
 - Volume separation and nitrogen flushing for Rn suppression and external shielding


Assembling of 20 optical submodules \rightarrow 1 BiPo 3 module

Final setup: BiPo 3 detector

- Prototypes have shown that required sensitivity levels could be reachable with the face to face detector approximation.
- Main features:
 - 2 modules detector \rightarrow Possibility to measure 8 SuperNEMO source foils simultaneously
 - 20 30x30 cm² optical sub-modules in each module
 - 3.6 m² of sensitive surface
 - 2 mm thick scintillator plates
 - Light guide geometry optimized
 - Volume separation and nitrogen flushing for Rn suppression and external shielding

BiPo 3 detectors installed in the internal structure

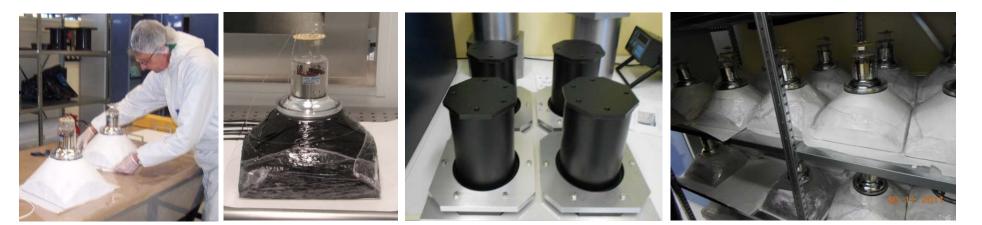


12th Pisa Meeting on Advanced Detectors. Elba. May 2012

Final setup: BiPo 3 detector

- Prototypes have shown that required sensitivity levels could be reachable with the face to face detector approximation.
- Main features: ٠
 - 2 modules detector \rightarrow Possibility to measure 8 SuperNEMO source foils simultaneously •
 - 20 30x30 cm² optical sub-modules in each module •
 - 3.6 m² of sensitive surface
 - 2 mm thick scintillator plates
 - Light guide geometry optimized •
 - Volume separation and nitrogen flushing for Rn suppression and external shielding •

• Almost the 80 optical submodules assembled and characterized in a test bench @ LAL.



Light guide annealing

Gluing of the scintillator

Aluminization

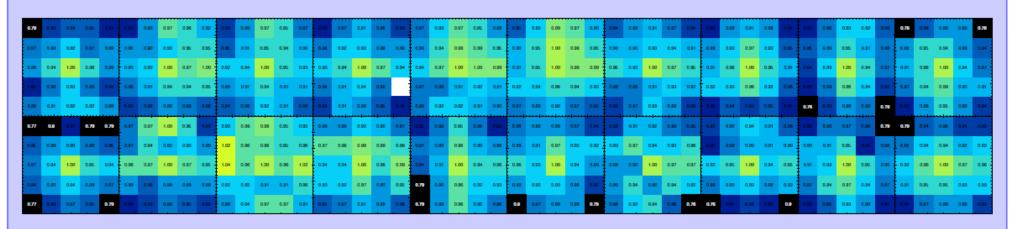
PMT gluing

Tyvek wrapping

Black film

Light black box

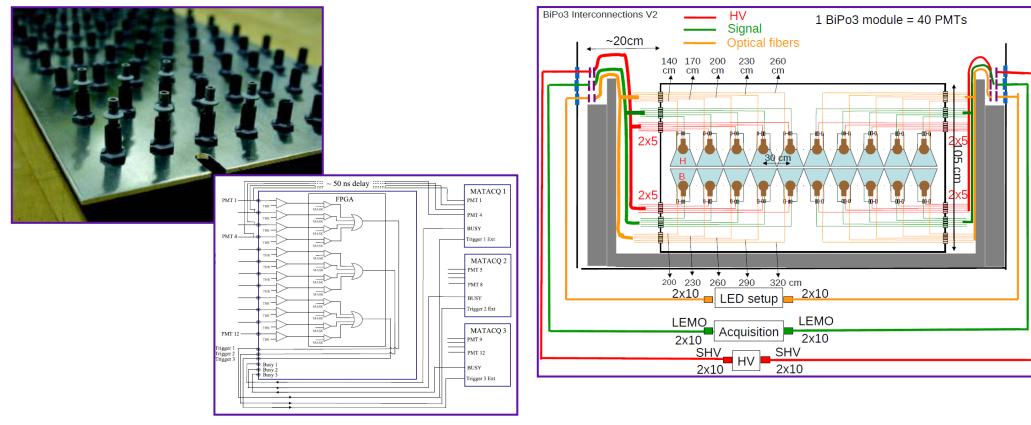
Characterized sub-modules storage



• Almost the 80 optical submodules assembled and characterized in a test bench @ LAL.

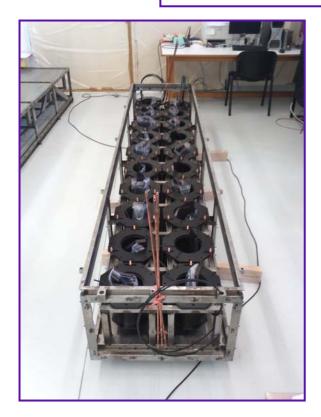
					-																	+	•									+										1								
2	0.99	0.99	0.9	м	1.04		0.94	0.97	0.96	0.9	0.1	E C	1.02	0.91	0.90	0.96	0.89	0.94	0.90	0.99	0.9	•	6 01	05 0.	80 0	99		75 0.1	25 0.1	80 0.0	10 CI	° 0	0.0	6 0.90	0.90	0.00	0.90	0.97	0.90	0.96	0.97	0.01	0.96	0.00	0.04		0.79	0.79	0.04	
	1.02	1.00	0.9		.90	0.90	0.95	0.98	0.99	0.85	0.5	ю с	0.992	0.94	0.92	0.93	0.97	0.99	0.92	0.96	0.9	6 0 03	6 O3	95 0.	90 O	90	0.		91 0.5	10 0.5	6 0.9	•	6 0.2	0.92	0.9	0.90	0.92	0.92	0.97	0.99	0.90	0.91	0.94	0.95	0.91	0.99	0.94	0.90	0.91	0.90
	1.02	1.00	0.9	17		0.99	0.94	1.00	0.92	0.85	0.		0.94	1.00	0.96	0.97	0.98	0.96	1.00	0.99	1.0	6 0.5	r 0.	97 1.	00 0.	99 D.	93 D.	as 0.	94 1.	00 0.5	e 1.	2 0.	0 0.0	1.00	0.92	0.92	0.99	0.92	1.00	0.94	0.92	0.92	0.95	1.00	0.97	0.95	0.91	0.95	1.00	0.95
	0.97	0.95	0.9	0		0.62	0.95	0.99	0.96	0.83	0.	87 G	9.90	0.92	0.91	0.95	0.96	1.00	1.04	1.02	1.0	1 0.5	e o:	90 1.	a2 0.	96 0.	23 0.	.02 0.1	91 Q.I	M 0.5	5 Q.	17 a.	8.0 OS	7 0.9	0.00	0.96	0.90	0.95	0.90	0.99	0.92	0.90	0.95	0.96	0.94	0.99	0.96	0.90	0.91	0.96
	0.95	0.92	0.9	2	.70	8.0		0.82		0.7	0.		0.94	0.99	0.99	0.93	0.83	0.96	0.90	0.96	0.0	0 0.5	a 0.	96 0.	aa o	95 0	91 D.	as 0.	82 Q.I	IS 0.5	2 0.1	a a	0.0	0.9	0.00	0.05	0.04	0.90	0.99	0.99	0.00	0.06	0.91	0.92	0.99	0.79	0.01	0.86	0.91	0.96
	0.82	0.96	0.0	н	176	0.85	0.92	0.97	0.95	0.94		н	0.00	0.91	0.90		0.9	0.92	1.04	1.01	0.9	H 0.	r 0.	96 03	95 0	23 D	.00 0.	aa 0.	94 Q.	97 0.5	6 Q.	a a	20 0.9	1 0.98	0.92	0.92	0.9	0.99	0.95	0.92	0.00	30.0	0.93	0.99	0.99	0.99	0.84	0.92	0.90	0.29
	0.96	0.93	0.0	10		0.89	0.95	0.99	0.95	0.95	•	н с	0.94	0.94	0.92	0.95	0.00	0.90	0.96	0.94	0.9	4 03	e 0.	94 D.	эн а	an 0.	ao 0.	.09 0.1	94 Q.	10 03	17 a.	• •	н 0.9	• 0.95	0.90	0.97	0.04	0.80	0.92	0.88	0.97	0.00	0.92	0.97	0.96	0.90	0.91	0.94	0.90	0.94
	0.94	1.00	0.5	6		0.94	0.96	1.00	0.90	0.92	0.1	x0 0	9.94	1.00	0.99	1.02	0.98	0.90	1.00	0.99	0.9	4 03	e 0.	96 1.	00 0.	95 0.	90 O	9 5 0.1	25 1.	80 1.5	o 0.	H 01	86 1.0	0 1.0	0.90	0.92	0.96	0.97	1.00	0.99	0.94	98.0	0.92	1.00	0.96	0.99	0.95	1.00	1.00	0.97
	39.0	0.91			1.74	0.07	0.90	0.94	0.85	0.00		12 0	0.91	0.94	0.95	1.02	0.92	0.22	0.97	0.94	0.0	0 0.5	0 1)	00 1.	0 00	99 O.	96 0.	94 03	90 Q.	a7 0.5	6 0.		н о.9	6 0.92	0.07	0.05	0.92	0.94	0.94	0.92	0.90	10.06	0.95	0.94	0.94	0.96	1.10	1.24	0.94	0.99

Bottom Part of BiPo3 Module



- Almost the 80 optical submodules assembled and characterized in a test bench @ LAL.
- Mechanical frame ready for the first module, and almost ready for the second

- Almost the 80 optical submodules assembled and characterized in a test bench @ LAL.
- Mechanical frame ready for the first module, and almost ready for the second
- Preliminary test and commissioning for DAQ system, Nitrogen flushing feedthroughs, calibrations...


ALMOST READY FOR THE COMMISSIONING OF THE FIRST MODULE.

- Almost the 80 optical submodules assembled and characterized in a test bench @ LAL.
- Mechanical frame ready for the first module, and almost ready for the second
- Preliminary test and commissioning for DAQ system, Nitrogen flushing feedthroughs, calibrations...

FIRST ASSEMBLING TESTS @ LAL CLEAN ROOM

- Approximate timeline:
 - Module 1:
 - All the required material for the first BiPo 3 module will be tested at LAL before mid June
 - The material will be delivered to Canfranc Underground Laboratory last week of June
 - Installation of the first BiPo 3 module between 2 and 13 of July
 - Commissioning of the detector during summer
 - Calibrations and background measurement: Until end 2012
 - Source measurement: Beginning 2013
 - Module 2:
 - Same schedule that for module 1 with ~3 months of delay

In March 2013 the whole detector will be completely ready, being possible to make source measurements since beginning 2013

Summary and Conclusions

- **NEMO 3** experiment has obtained really good results in the measurement of $T_{1/2}^{2\nu\beta\beta}$ and also upper limits of $T_{1/2}^{0\nu\beta\beta}$ for ⁸²Se and ¹⁰⁰Mo.
- SuperNEMO experiment will use the same technique with 100 kg of $\beta\beta$ emitter trying to reach the $\langle m_{\nu} \rangle \sim 50$ meV level.
- One requirement for SuperNEMO is to have really good *radiopurity* levels for the *source foils*: < 2 μBq/kg in ²⁰⁸TI and < 10 μBq/kg in ²¹⁴Bi.
- **BiPo** is a **dedicated** detector designed to measure these foils with the required sensitivity.
- A set of *prototypes* have showed the *viability* to construct the detector proving the *detection principle*.
- **Results** of these prototypes lead to think that required **sensitivity** will be **reached**.
- *Final setup* is almost *completed* and source foil measurements are expected to *start beginning 2013*.

BiPo: A dedicated radiopurity detector for the SuperNEMO experiment

Héctor Gómez Maluenda on behalf of SuperNEMO Collaboration

Laboratoire de l'Accélérateur Linéaire

gomez@lal.in2p3.fr

- NEMO 3 and SuperNEMO experiments.
 - Motivation: SuperNEMO $\beta\beta$ source foils radiopurity.
- The BiPo detector:
- BiPo 3 present status.
- Outlook and Prospects.
- Summary and Conclusions.

