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Introduction
In HEP experiments the use of pixel detectors requires that high power density in the sensitive area should be carried away by efficient thermal systems, eventually integrated in the light mechanical 

support structures. In many cases the dimensions and position of the sensors are such that miniaturization of mechanical support and cooling are strongly necessary, together with very low material 

budget. Micro-channel cooling technology is featured by high efficient thermal exchange and it can profit by miniaturization technique applied on composite material (CFRP) .

Advantages of the MICROCHANNELS technology: Super-B Silicon Vertex TrackerAdvantages of the MICROCHANNELS technology:

• due to the high surface/volume ratio, heat exchange through liquid forced convection takes place 

efficiently;

• contiguity between the fluid and the circuit dissipating power reduces thermal resistances;

• micro-channel dimensions allows uniform distribution of the passive material on the sensor .

The micro-channel mechanical support is designed to match the specifications for the planned pixel upgrade of 

the most internal layer (L0) of the Silicon Vertex Tracker of the Super-B experiment :

- To evacuate the heat dissipated by the electronics (specific power up to 2 W/cm2) and operating temperature of 

the sensors below 50°C

Super-B Silicon Vertex Tracker

• micro-channel dimensions allows uniform distribution of the passive material on the sensor .

In a thermal convective exchange the h film coefficient is: 

Nu = Nusselt number (1)             
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the sensors below 50°C

- Material budget of the pixel support structure and cooling(w/o cables/sensors) below 0.30% X0.

The Super-B Silicon Vertex Tracker

The key concept

Nu = Nusselt number 

k   = Conductive heat transfer coefficient of the liquid 

Dh = Hydraulic Diameter of the cooling channel  

From formulas (1) and  (2), for a Laminar flow fully developed, (Nu=constant), to maximize the 
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Dh minimization ���� high pressure drop ���� (needed a compromise between pressure drops and 

film coefficient value).

thermal exchange Q   ���� to maximize h   ���� to minimize the hydraulic diameter : all these 

considerations brings to the micro-channel technology .
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improved vertex resolution (~factor 2)

� Layer0 very close to IP (@1.5 cm)

with low material budget (<1% X0)

and fine granularity (50 µm pitch)

� Layer0 area 100 cm2

300 mm

Full  Module 140 mm

300 mm

Net  Module

Comparing Layer 0 & 
beam pipe dimensions

Layer 0 module cross section

2) bkg levels depend steeply on radius

� Layer0 needs to be fast and rad hard

(>20x5 MHz/cm2, >3x5 MRad/yr)

Full  Module 140 mmNet  Module

Several module support   prototypes with different geometries have been realized in composite materials.

Experimental tests have been  performed at the TFD test-bench  (INFN-Pisa lab).
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pipeTests performed on full/Net 

module samples (length = 120 

mm) with water-glycol coolant 

@ 10°C and  ∆ p =3.6 atm.
Full module H=700 µm test results
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Net Module is able to cool  up to about 

2-1.5 W/cm2 below the max required 

Temperature (50 °C).This goal can  be 
Module structure obtained with additive method by

gluing together single microtube using ARALDITE

A square CF micro-tube with an 

internal peek tube 50 µm thick used 

to avoid moisture on carbon fiber
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achieved with a greater safety factor by 

reducing the inlet coolant temperature.
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2011.The micro-tubes are obtained by a pultrusion
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Tests performed on Full Module 

sample (length = 120 mm) with 

water-glycol @ 10°C as coolant 

(∆p =2.0 atm).

Tests performed on Net Module sample 

(length = 120 mm) with water-glycol @ 10 

°C as coolant (∆p =3.5 atm).
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Structural test was realized on Net 

Module and Full Module prototypes.
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Module and Full Module prototypes.

The test has been performed up to 140 

atm . At this pressure the flanges of 

hydraulic interface were deformed to 

extrude the seal and produced the failure.Deformation at 140 atm
∆p =2.0 atm ∆T = 7.9 °C  at  1.0 W/cm2 ∆p =3.5 atmextrude the seal and produced the failure.Deformation at 140 atm

To reduce the ΔT along the module a special hydraulic interface has been designed allowing to supply the coolant from opposite directions.IN Bidirectional 
Flow Module
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CFRP Microchannels

Conclusions & Perspectives

Standard flow FEA Bidirectional flow FEANet Module sample ( L= 120 mm - Dh=200 µm  

th= 550 µm ) - coolant water-glycol @ 10 °C
Standard flow FEA Bidirectional flow FEA

The micro-channel CFRP prototypes match the Super-B Layer 0 pixel detector requirements on material thickness (X0 ). An efficient heat evacuation has been achieved by micro-channel technology through liquid forced convection.

The experimental results show that the Net Module is able to cool sensors with a power density up to 1.5 W/cm2 with a  X0 value of 0.11 % and keep the sensor below 50 °C, as requested  from specs. Moreover, with bidirectional coolant 

flow, it is possible to reduce the ∆T along the sensor below 2°C .  Further optimization currently under development at the TFD Pisa laboratory: in progress the set-up for transition phase CO2 cooling on CFRP micro-channels .
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