Measurement results of DIPIX pixel sensor developed in SOI technology

Mohammed Imran Ahmed^{a,b}, Yasuo Arai^c, Marek Idzik^a, Piotr Kapusta^b, Toshinobu Miyoshi^c, Michał Turala^b

^aAGH University of Science and Technology Faculty of Physics and Applied Computer Science - Krakow, Poland

^bInstitute of Nuclear Physics Polish Academy of Sciences - Krakow, Poland

^cInstitute of Particle and Nuclear Studies, High Energy Accelerator Research Organization(KEK) - Tsukuba, Japan

12th Pisa Meeting, 20 - 26 May, 2012

Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk

Introduction

- Silicon-on-insulator Technology
- DIPIX pixel sensor
- 2 Study of Pixel Behaviour
 - Long time stability test

3 Laser Measurements

- Halo Effect
- Optimization of Back Voltage and Integration time

4 Measurements with Americium source

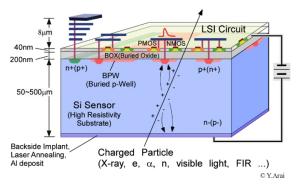
- Data Cleaning
- Signal Clusters and Energy plots
- Comparison of ENC and SNR for CZ-n and FZ-n

Introduction

- Silicon-on-insulator Technology
- DIPIX pixel sensor
- 2 Study of Pixel Behaviour
 - Long time stability test

3 Laser Measurements

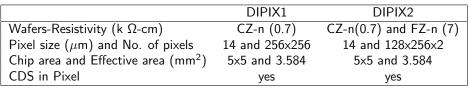
- Halo Effect
- Optimization of Back Voltage and Integration time

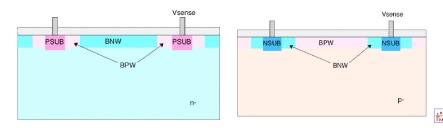

4 Measurements with Americium source

- Data Cleaning
- Signal Clusters and Energy plots
- Comparison of ENC and SNR for CZ-n and FZ-n

Silicon-on-insulator Technology

- SOI technology separates devices from the substrate using insulator buried oxide (BOX) layer.
- The features of SOI technology are: high speed, low power, good radiation hardness.
- Back gate effect is mitigated by implanting buried P-well (BPW) just below BOX layer.




Process	Lapis 0.2 μ m FD-SOI CMOS process,			
	1 Poly, 5 Metal.			
	MIM Capacitor (1.5 fF/ μ m 2), DMOS-Cap			
SOI wafer	Diameter: 200 mm ϕ , 720 μ m thick			
	Top Si : Cz, ${\sim}18~\Omega$ -cm, ${\sim}40$ nm thick			
	Buried Oxide : 200 nm thick			
	Handle wafer: 1. Cz-n: \sim 700 Ω -cm			
	2. FZ-n: \sim 7k Ω -cm			
Backside Process	Thinned to 260 μ m and Plated with Al (200			
	nm).			

DIPIX pixel sensor

- DIPIX is a Dual mode Integration type PIXel with reduced pixel size of 14 $\mu {\rm m}.$
- Circuit is designed to work both in n-type and p-type substrate.
- Internal 10-bit Wilkinson type ADC. (not use in this measurements)

- Silicon-on-insulator Technology
- DIPIX pixel sensor

2 Study of Pixel Behaviour

Long time stability test

- Halo Effect
- Optimization of Back Voltage and Integration time

- Data Cleaning
- Signal Clusters and Energy plots
- Comparison of ENC and SNR for CZ-n and FZ-n

Long time stability test

Stability test is to check whether the detector is capable of operating in long run measurements.

Test Setup :

Parameters	DIPIX2		
Environment	Dark		
Signal	No		
No. of Frames	60000		
Integration Time	$500 \mu s$		
Scan Time (pixel readout time)	640 ns/pixel		
RST time without cds and with cds	2040 ns and 2160 ns		
RSTV for N-type wafer	750mV and 1300mV		

• The Back voltage for CZ-n = 100 V.

Stability Test of CZ-n pixel sensor

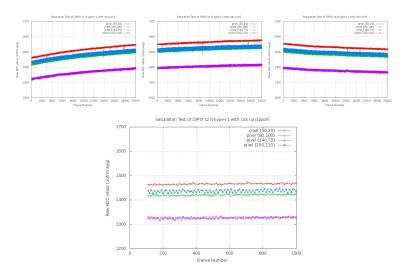


Figure: Stability test of CZ-n with CDS. (top 3 graphs each with 20000 frames measured subsequently and bottom is zoom of initial 1000 frames)

Mohammed Imran Ahmed (AGH-UST) Measurement results of DIPIX pixel sensor

Summary

- DIPIX is stable and so it may work for long time run.
- Small initial changes in number of counts may probably be reduced by maintaining a constant temperature.

ntroduction

- Silicon-on-insulator Technology
- DIPIX pixel sensor
- 2 Study of Pixel Behaviour
 - Long time stability test

3 Laser Measurements

- Halo Effect
- Optimization of Back Voltage and Integration time

4 Measurements with Americium source

- Data Cleaning
- Signal Clusters and Energy plots
- Comparison of ENC and SNR for CZ-n and FZ-n

Laser Setup

Laser Details				
Laser Driver	PDL 800-D			
Frequency	80 MHz			
Modes of operation	Pulse			
Laser Head wavelength	1060 nm			
3D setup	X,Y and Z			

NHC CO

Halo in FZ-n pixel sensor

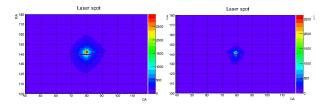


Figure: Back voltage was set to a) Left fig. 10V, b) Right fig. 70V

Halo Effect

- A bunch of pixels around the hit pixel(halo) having 12 to 15 % of hit pixel count is seen.
- This problem is seen in both sensors. The worse is FZ-n.
- Halo depends mostly on Laser Intensity (increase with intensity).

Parameters	CZ-n Type	FZ-n Type	
Back Voltage	80V	60V	
Integration Time	$100 \mu s$	$100 \mu s$	

Table: Optimized Back Voltage and Integration Time

Optimization

- The presence of Halo, force us to do the scan of back voltage and Integration time to optimize them in order to reduce halo.
- Optimization is used to reduce the Halo and spot size.

FZ-n before and after optimization

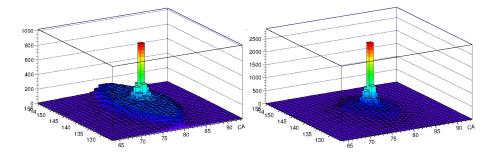


Figure: a) Left fig. Before optimization , b)Right fig. After optimization

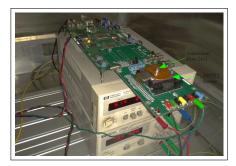
Summary

- Halo is seen in both sensors and depends mostly on Intensity. Probably Halo is caused by large charge generation disturbing the electric field.
- Optimized Back voltage and Integration time result in smaller spot size.

Introduction

- Silicon-on-insulator Technology
- DIPIX pixel sensor
- Study of Pixel Behaviour
 Long time stability test
 - Laser Measurements
 - Halo Effect
 - Optimization of Back Voltage and Integration time

Measurements with Americium source


- Data Cleaning
- Signal Clusters and Energy plots
- Comparison of ENC and SNR for CZ-n and FZ-n

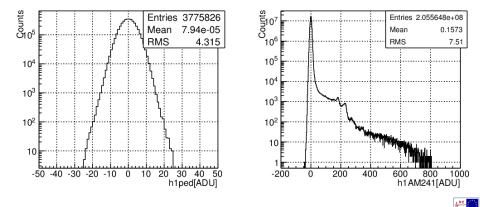
Americium Radiation Data and Setup

- Am-241 source is used with the activity of 10mCi(=370MBq).
- The rate of incident photons is low.
- Setup is placed in black box.

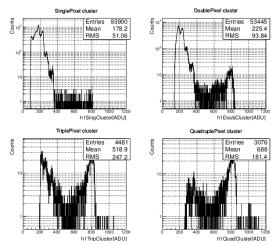
Radiation Data			
Туре	Energy		
Gamma	59.5KeV		
Gamma	26.3KeV		
Gamma	13.9KeV		
Cu L x-ray	8.01KeV		
Np L-x-ray	17.7KeV		
Np L-x-ray	20.7KeV		

Integration Time and Scan Time	100 μ s, 640 ns/pixel		
Back Voltage	80 V		
RSTV and RST time	750 mV, 2040 ns		
Run Mode	calib data and signal data		
Calib run (dark, no source)	500 events		
Am-241 run (dark)	20000 events		

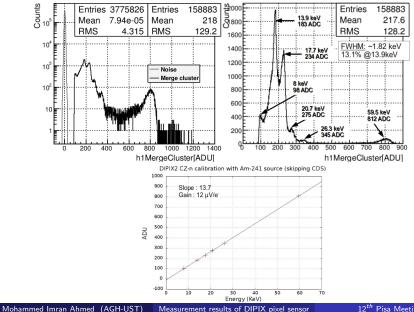
Table: Parameter setting of sensor CZ-n Type


Noise cleaning

- Calib data is used to remove bad pixels.
- Bad frames and common mode noise are removed from both calib and Am-241 run.


Data Cleaning

- Sensor = CZ-n, CDS = off, No. of frames = 20000 Am-241 and 500 calib runs.
- Back voltage = 80 V, $IT = 100 \ \mu s$, Pixel scan time = 640 ns.


Clustering

- Number of pixels in a cluster depends on deposited energy.
- Total 4σ threshold is use to get hit pixels and these pixels are used to find the cluster.

CZ-n sensor signal Clusters and Energy plots

12th Pisa Meeting

22 / 29

ENC and SNR Results

CZ N-Type Without CDS					
RegionIT(μ s)Noise (ADC)ENC(e ⁻)SNR59.5KeV (ADC)					
1	100	4.3	\simeq 86	\simeq 189	812
CZ N-Type With CDS					
Region	IT	Noise	ENC(e ⁻)	SNR	59.5KeV (ADC)
1	100	3.6	$\simeq 85$	\simeq 192	690

FZ N-Type Without CDS					
Region	$IT(\mu s)$	Noise (ADC)	ENC(e ⁻)	SNR	59.5KeV (ADC)
1	100	5.1	\simeq 127	$\simeq 129$	657
2	100	4.7	\simeq 141	$\simeq 115$	543

Summary

- 1st region is the best of both sensor (ENC=85e⁻ and SNR=189 using Am-241 source 59.6keV), 2nd region is having lot of bad and hot pixels.
- Readout with CDS give similar results.

ntroduction

- Silicon-on-insulator Technology
- DIPIX pixel sensor
- 2 Study of Pixel Behaviour
 - Long time stability test

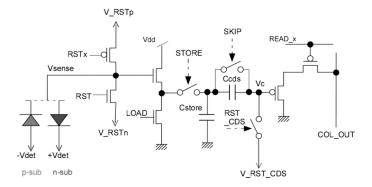
3 Laser Measurements

- Halo Effect
- Optimization of Back Voltage and Integration time

4 Measurements with Americium source

- Data Cleaning
- Signal Clusters and Energy plots
- Comparison of ENC and SNR for CZ-n and FZ-n

- DIPIX2 shows long time stable operation.
- Halo problem seen with laser can be reduced using small intensity and optimized back voltage. Halo is not seen with americium source.
- CZ-n is having good SNR and ENC (85e⁻), whereas FZ-n is worse (ENC = $\simeq 127e^{-}$).
- More study is needed to understand the CDS readout.



Thank you for your attention!

Backup:DIPIX circuit

12th Pisa Meeting 27 / 29

Backup: Stability Test of FZ-n

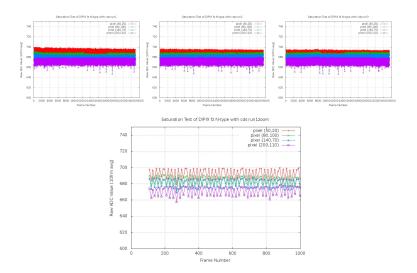


Figure: Stability test of FZ-n with CDS. (top 3 graphs each with 20000 frames measured subsequently and bottom is zoom of initial 1000 frames)

Mohammed Imran Ahmed (AGH-UST) Measurement results of DIPIX pixel sensor

Backup: CZ-n before and after optimization

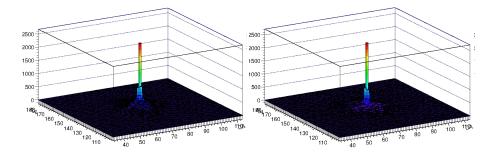


Figure: a) Left fig. Before optimization , b)Right fig. After optimization

