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Simultaneous Searches for 
WIMP Dark Matter and 0-ν ββ decay 

at the ton-scale 
with a high-pressure xenon gas TPC 

 
 
 

David Nygren LBNL 
 

For the NEXT collaboration 
See also talk on NEXT by David Lorca Galindo 



Xenon:  
a popular choice for both  
0-ν ββ and WIMP search 

But not in the same detector! 
•  Both require very low backgrounds… 
•  Simultaneous searches could save $$,… 
•  I present a case that both could be done, with 

little or no compromise, in a xenon gas 
electroluminescent TPC, perhaps at ton-scale 
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0-ν ββ: Energy resolution is important! 
0 

Ideal case: 0-ν signal appears as a narrow peak 

Only  

2-v decays 
Rate 

(Σ electron energy)  Q-value 

Only 

0-v decays 

No backgrounds 
above Q-value 

0 

δE/E <1% FWHM is needed for separation from 2-ν background 
and to avoid nearby γ-ray lines such as from 214Bi 
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New: 1% FWHM energy resolution 
for 137Cs 662 keV γ-rays in xenon! 

 

Data from 
LBNL-TAMU 
HP Xe TPC 

 

This result is 
important for 
both 0-νββ & 
WIMP searches 

 

 

662 keV, 
ionization 
signal only 
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Resolution: 137Cs γ-ray (662 keV)  
σN = (F⋅N)1/2 �

F  ≡  Fano factor: F = 0.15 (xenon gas) 
N = Q/w = 662,000/25 ~26,500 primary electrons 

 �
σN = 63,  a very small number of electrons! �

�
δE/E = 2.35 σN/N =  0.6%  FWHM (intrinsic)�

�
Our	
  1.04%	
  FWHM	
  result	
  is	
  	
  ~1.6	
  x	
  intrinsic	
  resolu9on	
  

How	
  does	
  gas	
  deliver	
  such	
  good	
  performance?	
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Energy resolution in Xenon depends strongly on density 

Here,	
  the	
  
fluctua9ons	
  
are	
  normal	
  

F	
  =	
  0.15	
  

	
  Unfolded	
  
resolu9on:	
  

δE/E	
  ~0.6%	
  
FWHM	
  

For	
  ρ	
  <0.55	
  g/cm3,	
  ioniza9on	
  energy	
  resolu9on	
  is	
  “intrinsic”	
  

Ionization signal only! 

Very	
  large	
  
fluctua9ons	
  
between	
  

light/charge!	
  

F	
  ~	
  20	
  	
  !!	
  

WIMPs:	
  	
  

S2/S1	
  
suffers!	
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Energy Partitioning in LXe 
Anomalously large fluctuations in energy partition between ionization and 

scintillation appear in Lxe, and generate a Fano factor F ~ 20 
 
The large fluctuations in LXe are caused by delta-rays, few in number, but 

with “Landau” fluctuations toward high local ionization density 
 
A conduction band exists in LXe, promoting high recombination in regions 

of high ionization density – delta rays 
 
The recombination process amplifies the non-Poisson statistics of the 

energy loss process of electrons in LXe, leading to large fluctuations 
 

But not for xenon gas! 
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Energy resolution at Qββ = 2457 keV�

δE/E = 2.35 ⋅ (F⋅W/Q)1/2 
–  F  ≡  Fano factor (HPXe) :   F = 0.15  

–  w ≡ Average energy per ion pair: w ~  25 eV 
–  Q ≡ Energy deposited from 136Xe --> 136Ba:  

N = Q/w ~100,000 primary electrons�
σN = (F⋅N)1/2 ~124 electrons rms! �

�
δE/E = 0.28% FWHM       intrinsic HPXe 

 
Only about x3 worse than Ge diodes! �



Pisameet 2012  10 

Energy resolution at Qββ = 2457 keV�

�
δE/E = 0.28% FWHM       intrinsic HPXe! 

 
How can this performance be preserved  

through the detection process? 
 

Let “G” represent noise/fluctuations in EL gain�
Uncorrelated fluctuations can add in quadrature �

�
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Gain, noise & resolution 
σn = ((F + G)⋅N)1/2 �

�

Require that G ≤ F = 0.15 �
�

Only electroluminescence can provide this performance �
�

EL: #G = JCP/NUV + (1 + σ2
PMT)2/Npe �

Npe = number of photo-electrons per primary electron �
σ2

PMT ≈ 2 (due to after-pulsing !!)�
G ≈ 3/Npe

�

⇒   Npe > 20 per electron so that G ≤ F = 0.15 �
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Electro-Luminescence (EL) is the key   
(aka: Gas Proportional Scintillation) 

•  Physics process generates ionization signal�

•  Electrons drift in low electric field region �

•  Electrons enter a high electric field region �

•  Electrons gain energy, excite xenon: 8.32 eV �

•  Xenon radiates VUV (≈175 nm, 7.5 eV)�

•  Electron starts over, gaining energy again �

•  Linear growth of signal with voltage�

•  Photon generation up to >1000/e, but no ionization �

•  Sequential gain; no exponential growth ⇒ fluctuations are very small�
•  δNUV = (JCP • NUV )1/2 (Poisson: JCP = 1)�

•  Optimal EL conditions: JCP = 0.01 �
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How was this 1% result obtained? 

 

Data from 
LBNL-TAMU 
HP Xe TPC 

 

This result is 
important for 
both 0-νββ & 
WIMP searches 

 

 

662 keV, 
ionization 
signal only 
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LBNL-TAMU TPC Prototype 
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TIPP	
  2011	
   15	
  

Field	
  cages/Light	
  cage	
  
PTFE	
  with	
  copper	
  	
  stripes	
  

Electroluminescence	
  region	
  
10	
  kV	
  across	
  a	
  4	
  mm	
  gap	
  

19	
  PMTs	
  and	
  PMT	
  bases	
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TIPP	
  2011	
   16	
  

PMT Array: inside the pressure vessel 
Quartz window 2.54 cm diameter PMTs 
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Complex topologies are common! 
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Attenuation of electrons during drift is very small 

correction for 
attenuation is 
modest, but 
must be done  
with care for 
minimal error  
to energy 
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“Neutrino Experiment Xenon TPC” 
 

NEXT 
  

Is based on high-pressure xenon gas (HPXe) TPC ideas 
 

Is optimized for 0-ν ββ becay 
 

has 100 kg of enriched xenon (85% 136Xe) 
 

 is located in Canfranc Underground Laboratory 
 

 funding by Spanish Funding Agencies: € 6M+ 
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 NEXT Asymmetric  TPC �
“Separated function” 

Transparent -HV plane 

Readout plane B Readout plane A 

. 

ions 

energy & primary 
scintillation 
signals recorded 
here, with PMTs 

Field cage: reflective teflon (+WLS)  

EL signal 
created here 

Tracking  
performed 
 here, with 
“SiPMT” array 

Fiducial surface 

Operating pressure:  
10 -15 bars 
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Direct Dark Matter Search? 
•  NEXT-100 not optimized for Dark Matter search, but 

will serve as a spring board to understand potential 

–  S1 detection efficiency determines recoil energy threshold 

•  Normal fluctuations in S2/S1 in HPXe should offer a 
huge benefit in electron/nuclear recoil discrimination. 

–  F factor ratio of 11 in enters exponentially in overlap of gaussian 

 



 Ton-scale concept: DM + 0ν-ββ 

•  The number of PMTs should remain small, or smaller.  
•  The optical detection efficiency should be maximized 

to increase sensitivity to low-energy nuclear recoils. 

•  Approach: use wavelength shifting (WLS) plastic  
–  cover the TPC interior completely 
–  pipe light to remote PMTs, shielded by copper 
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Toward the ton-scale: 
WLS bars everywhere 
PMTs behind copper 
PMTs can be at 
anode or cathode 
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 Ton-scale concept... 

•  Problem: xenon light is in VUV - 173 nm  
–  WLS plastic response maximum is at 300 nm 
–   WLS plastic response at 173 nm is ~zero !! 
–  What to do? 

•  Use gaseous molecular wavelength shifters 
–  Trimethylamine (TMA) and/or Triethylamine (TEA) 
–  TMA and TEA fluoresce efficiently in bands 285 – 310 nm 
–  TMA and TEA may also display Penning effect in xenon 
–  Complex behavior expected with density and fraction! 
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Back to Basics 
 
A parallel-plate 
ionization chamber 
with optical sensing, 
using 4 PMTs that 
look at the gap from 
the sides 
 
We will measure both 
light and charge as 
functions of density, 
electric field, and 
fraction of  TEA/TMA,  
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We can have 
eight PMTs if 
useful to do so. 
 
We may modify 
the cathode and 
convert to TPC 
mode to study 
energy resolution  
and EL range 



Perspective 
•  Gas phase offers superb energy resolution, event 

visualization and flexibility in operation 

•  Electroluminescent gain stage is the key element for 
near-intrinsic energy resolution for 0ν-ββ search  

•  Energy resolution may provide superb discrimination 
between electron and nuclear recoils through S2/S1  

•  Can switch easily from enriched to depleted xenon, 
with real benefits to both searches 
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Conclusion... 

•  Is this a true story or a fairy-tale? 
–  We should know which in less than a year 

•  Gas detectors continue to offer surprises! 
–  “You can see a lot by looking” – Yogi Berra 
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A Diagonal Muon Track - “reconstructed”; 

Signal depends on radius in chamber 

  ~ 14 cm 
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Virtues of Electro-Luminescence in HPXe 

•  Linearity of gain versus pressure, HV �
•  Immunity to microphonics�
•  Tolerant of losses due to impurities�
•  Absence of positive ion space charge �
•  Absence of ageing, quenching of signal�
•  Isotropic signal dispersion in space�
•  Trigger, energy, and tracking functions are 

accomplished with optical detectors�
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Gamma events (e - R) 

Neutron events (N - R) 

Why do γ events show large 
S2/S1 fluctuations at all 
energies, not improving with 
energy? 

Lo
g 1

0 S
2/

S
1 

Xenon10 data WIMP search, with xenon 
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