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Xenon:
a popular choice for both
0-v BB and WIMP search

But not in the same detector!
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Xenon:
a popular choice for both
0-v BB and WIMP search

« Both searches require very low backgrounds
 Simultaneous searches could save $$9,...

* | present a case that both could be done, with

little or no compromise, in a xenon gas
electroluminescent TPC, perhaps at ton-scale

Pisameet 2012 3



0-v BB: Energy resolution is important!

|deal case: 0-v signal appears as a narrow peak

Only
2-v decays

Only

0-v decays
Rate

No backgrounds
above Q-value

0 (Z electron energy) Q-value

OE/E <1% FWHM is needed for separation from 2-v background
and to avoid nearby y-ray lines such as from 214B;
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New: 1% FWHM energy resolution
for 13/Cs 662 keV y-rays in xenon!
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Data from
LBNL-TAMU
HP Xe TPC

This result is
important for
both 0-vf3p &
WIMP searches



Resolution: 13’Cs y-ray (662 keV)

ON - (FN)I/Z
F = Fano factor: F = 0.15 (xenon gas)
N =Q/w = 662,000/25 ~26,500 primary electrons

oy = 63, a very small number of electrons!

SE/E = 2.35¢ O, /N = 0.6% FWHM (intrinsic)

Our 1.04% FWHM result is ~1.6 x intrinsic resolution
How does gas deliver such good performance?
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Energy resolution in Xenon depends strongly on density

A. Bolotnikov, B. Ramsey [ Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 360-370
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: Epé62keV %m?ﬁ,,o.c 41| Very large
. b fluctuations
Here, the g ; \\ between
. g LXe, T=3 g :
fluctuations = - & i 1| light/charge!
are normal 8 - 7
B 3 F~20 !l
F=015 \_§ :
Unfolded lonization signal only! WIMPs:
resolution: . S2/s1
‘s e suffers!
6E/E ~0.6% Density, g/cm®
FW H M sity dependencies of the intrinsic energy resolution (% FWHM) measured for 662 keV gamma-rays.

For p <0.55 g/cm3, ionization energy resolution is “intrinsic”
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Energy Partitioning in LXe

Anomalously large fluctuations in energy partition between ionization and
scintillation appear in Lxe, and generate a Fano factor F ~ 20

The large fluctuations in LXe are caused by delta-rays, few in number, but
with “Landau” fluctuations toward high local ionization density

A conduction band exists in LXe, promoting high recombination in regions
of high ionization density — delta rays

The recombination process amplifies the non-Poisson statistics of the
energy loss process of electrons in LXe, leading to large fluctuations

But not for xenon gas!
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Energy resolution at Qg = 2457 keV

SE/E = 2.35 - (F-W/Q)"2
— F = Fano factor (HPXe) : F=0.15
— w = Average energy per ion pair. w ~ 25 eV
— Q = Energy deposited from 36Xe --> 13°Ba:
N = Q/w ~100,000 primary electrons
oy = (FN)2 ~124 electrons rms!

OE/E = 0.28% FWHM intrinsic HPXe

Only about x3 worse than Ge diodes!
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Energy resolution at Qg = 2457 keV

OE/E = 0.28% FWHM intrinsic HPXe!

How can this performance be preserved
through the detection process?

Let “G” represent noise/fluctuations in EL gain
Uncorrelated fluctuations can add in quadrature
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Gain, noise & resolution

O, = ((F + G)N)'/2

Require that G < F = 0.15

Only electroluminescence can provide this performance

EL: G = JCP/NUV + (l + GZPMT)Z/Npe
. = humber of photo-electrons per primary electron
o%pmr = 2 (due to after-pulsing !)
G =~ 3/N,,
= Npe > 20 per electron SO0 that G < F = 0.15

N
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Electro-Luminescence (EL) is the key
(aka: Gas Proportional Scintillation)

Physics process generates ionization signal
Electrons drift in low electric field region
Electrons enter a high electric field region
Electrons gain energy, excite xenon: 8.32 eV
Xenon radiates VUV (=175 nm, 7.5 eV)
Electron starts over, gaining energy again
Linear growth of signal with voltage

Photon generation up to >1000/e, but no ionization

e J :
5@  «—nprimary electrons
e
Drift region o i Xe, 1 atm
e
‘ Metallic grid +
o [ VUV scintillation N
Scintillation ~ 0O

region

“1, photons

e

Metallic grid

VUV photosensor

Sequential gain; no exponential growth = fluctuations are very small

6NUV = (Jcp * NUV )1/2 (pOiSSOFI: JCP = 1)
Optimal EL conditions: J., = 0.01
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How was this 1% result obtained?
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LBNL-TAMU TPC Prototype
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ADC Value
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Complex topologies are common!
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Attenuation of electrons during drift is very small

A

Electron Lifetime 5.8+0.1 ms

correction for
attenuation is
modest, but
must be done
with care for
minimal error
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‘N E X T

NEXT
Is based on high-pressure xenon gas (HPXe) TPC ideas
Is optimized for 0-v B3 becay
has 100 kg of enriched xenon (85% 13%Xe)
is located in Canfranc Underground Laboratory

funding by Spanish Funding Agencies: € 6M+
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NEXT Asymmetric TPC
“Separated function”

Fiducial surface Transparent -HV plane

Readout plane A /ReadOUt .

energy & primary

EL signal scintillation
signals recorded

created here
R@ here, with PMTs

Tracking

performed

here, with Operating pressure:
SIPMT™array | rield cage: reflective teflon (+wLs) | 10 -15bars
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Main Cylin. Press. Vessel EL mesh planes

Torispheric Heads Tracking Plane, SiPM
Energy Plane, PMTs EL HV FT. Y Cu Shield
Cu Shield .

Vac. Manifold

i iidt it

T _Shielding, ternal, u
Press. relief/Flow/Vac. Ports Shielding, External, Pb




Sapphire window Conduit Fitting

Screw-down RingEnCIOSUre Backplate
Antirotation washer Heat Spreader
PEEK Ring Retaining Ring
Kapton Shim
O-ring PMT

Potting
Base

Spring
Band Clamp
Clamp Mount

Optical Coupling Pad
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Direct Dark Matter Search?

« NEXT-100 not optimized for Dark Matter search, but
will serve as a spring board to understand potential

— S1 detection efficiency determines recoil energy threshold

* Normal fluctuations in S2/S1 in HPXe should offer a
huge benefit in electron/nuclear recoil discrimination.

— F factor ratio of 11 in enters exponentially in overlap of gaussian
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Ton-scale concept: DM + Ov-3f3

« The number of PMTs should remain small, or smaller.

« The optical detection efficiency should be maximized
to increase sensitivity to low-energy nuclear recoils.

« Approach: use wavelength shifting (WLS) plastic
— cover the TPC interior completely
— pipe light to remote PMTs, shielded by copper

Pisameet 2012 24



5
"
.
<
3
i
8

f//

25







Ton-scale concept...

* Problem: xenon lightis in VUV - 173 nm
— WLS plastic response maximum is at 300 nm

— WLS plastic response at 173 nm is ~zero !
— What to do?

« Use gaseous molecular wavelength shifters
— Trimethylamine (TMA) and/or Triethylamine (TEA)
— TMA and TEA fluoresce efficiently in bands 285 — 310 nm
— TMA and TEA may also display Penning effect in xenon
— Complex behavior expected with density and fraction!

Pisameet 2012
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Back to Basics

A parallel-plate
ionization chamber
with optical sensing,
using 4 PMTs that
look at the gap from
the sides

We will measure both
light and charge as
functions of density,
electric field, and
fraction of TEA/TMA,
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We can have
eight PMTs if
useful to do so.

We may modify
the cathode and
convert to TPC
mode to study
energy resolution
and EL range
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Perspective

Gas phase offers superb energy resolution, event
visualization and flexibility in operation

Electroluminescent gain stage is the key element for
near-intrinsic energy resolution for Ov-3f3 search

Energy resolution may provide superb discrimination
between electron and nuclear recoils through S2/S1

Can switch easily from enriched to depleted xenon,
with real benefits to both searches
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Conclusion...

* |s this a true story or a fairy-tale?
— We should know which in less than a year

Pisameet 2012
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Conclusion...

* |s this a true story or a fairy-tale?
— We should know which in less than a year...

» (Gas detectors continue to offer surprises!
— “You can see a lot by looking” — Yogi Berra

Pisameet 2012
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A Diagonal Muon Track - “reconstructed”;

Signal depends on radius in chamber

| Waveform: Event 14, Channel 22
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Virtues of Electro-Luminescence in HPXe

e Linearity of gain versus pressure, HV
e Immunity to microphonics
e Tolerant of losses due fto impurities

e Absence of positive ion space charge

e Absence of ageing, quenching of signal
e Isotropic signal dispersion in space

e Trigger, energy, and fracking functions are
accomplished with opfical detectors
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WIMP search, with xenon

Xenon10 data

Gamma events (e - R)
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Photo-Luminescence of PMMA

Different WLS nature observed for two PMMA Samples
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