Simultaneous Searches for WIMP Dark Matter and 0-v ββ decay at the ton-scale with a high-pressure xenon gas TPC

David Nygren LBNL

For the NEXT collaboration See also talk on NEXT by David Lorca Galindo

Xenon:

a popular choice for both 0-v $\beta\beta$ and WIMP search

But not in the same detector!

Xenon:

a popular choice for both 0-v $\beta\beta$ and WIMP search

- Both searches require very low backgrounds
- Simultaneous searches could save \$\$\$,...
- I present a case that both could be done, with little or no compromise, in a xenon gas electroluminescent TPC, perhaps at ton-scale

0-v ββ: Energy resolution is important!

Ideal case: 0-v signal appears as a narrow peak

 $\delta E/E < 1\%$ FWHM is needed for separation from 2-v background and to avoid nearby γ -ray lines such as from ²¹⁴Bi

New: 1% FWHM energy resolution for ¹³⁷Cs 662 keV γ-rays in xenon!

Resolution: ¹³⁷Cs γ -ray (662 keV) $\sigma_N = (F \cdot N)^{1/2}$ F = Fano factor: F = 0.15 (xenon gas) N = Q/w = 662,000/25 ~26,500 primary electrons $\sigma_N = 63$, a very small number of electrons!

 $\delta E/E = 2.35 \circ \sigma_N/N = 0.6\%$ FWHM (intrinsic)

Our 1.04% FWHM result is ~1.6 x intrinsic resolution How does gas deliver such good performance?

Energy resolution in Xenon depends strongly on density

For ρ <0.55 g/cm³, ionization energy resolution is "intrinsic"

Pisameet 2012

Energy Partitioning in LXe

Anomalously large fluctuations in energy partition between ionization and scintillation appear in Lxe, and generate a Fano factor F ~ 20

The large fluctuations in LXe are caused by *delta-rays*, few in number, but with "Landau" fluctuations toward high local ionization density

A conduction band exists in LXe, **promoting** high recombination in regions of high ionization density – delta rays

The recombination process <u>amplifies</u> the non-Poisson statistics of the energy loss process of electrons in LXe, leading to large fluctuations

But not for xenon gas!

Energy resolution at $Q_{\beta\beta}$ = 2457 keV

 $\delta E/E = 2.35 \cdot (F \cdot W/Q)^{1/2}$

 $\begin{array}{ll} - \ \mbox{F} \equiv \ \mbox{Fano factor (HPXe)}: & \ \mbox{F} \equiv 0.15 \\ - \ \mbox{w} \equiv \ \mbox{Average energy per ion pair: w} \sim \ \mbox{25 eV} \\ - \ \mbox{Q} \equiv \ \mbox{Energy deposited from } ^{136}\mbox{Xe} \ \mbox{-->} \ ^{136}\mbox{Ba}: \\ N = \ \mbox{Q/w} \ \ \mbox{-100,000 primary electrons} \\ \sigma_{N} = \ \mbox{(F\cdot N)}^{1/2} \ \ \mbox{-124 electrons rms!} \end{array}$

$\delta E/E = 0.28\%$ FWHM intrinsic HPXe

Only about x3 worse than Ge diodes!

Energy resolution at $Q_{\beta\beta} = 2457 \text{ keV}$

$\delta E/E = 0.28\%$ FWHM intrinsic HPXe!

How can this performance be preserved through the detection process?

Let "G" represent noise/fluctuations in EL gain Uncorrelated fluctuations can add in quadrature

Gain, noise & resolution $\sigma_n = ((F + G) \cdot N)^{1/2}$ Require that $G \leq F = 0.15$

Only electroluminescence can provide this performance

EL: $G = J_{CP}/N_{UV} + (1 + \sigma_{PMT}^2)^2/N_{pe}$ N_{pe} = number of photo-electrons per primary electron $\sigma_{PMT}^2 \approx 2$ (due to after-pulsing !!) $G \approx 3/N_{pe}$ $\Rightarrow N_{pe} > 20$ per electron so that $G \le F = 0.15$

Electro-Luminescence (EL) is the key (aka: Gas Proportional Scintillation)

- Physics process generates ionization signal
- Electrons drift in low electric field region
- Electrons enter a high electric field region
- Electrons gain energy, excite xenon: 8.32 eV
- Xenon radiates VUV (≈175 nm, 7.5 eV)
- Electron starts over, gaining energy again
- <u>Linear</u> growth of signal with voltage
- Photon generation up to >1000/e, but <u>no</u> ionization
- Sequential gain; no exponential growth \Rightarrow fluctuations are very small
- $\delta N_{UV} = (J_{CP} \bullet N_{UV})^{1/2}$ (Poisson: $J_{CP} = 1$)
- Optimal EL conditions: J_{CP} = 0.01

How was this 1% result obtained?

LBNL-TAMU TPC Prototype

PMT Array: inside the pressure vessel Quartz window 2.54 cm diameter PMTs

Complex topologies are common!

Attenuation of electrons during drift is very small

Pisameet 2012

"Neutrino Experiment Xenon TPC"

NEXT

Is based on high-pressure xenon gas (HPXe) TPC ideas

Is optimized for 0-v $\beta\beta$ becay

has 100 kg of enriched xenon (85% ¹³⁶Xe)

is located in Canfranc Underground Laboratory

funding by Spanish Funding Agencies: € 6M+

NEXT Asymmetric TPC "Separated function"

Pisameet 2012

Direct Dark Matter Search?

• NEXT-100 not optimized for Dark Matter search, but will serve as a spring board to understand potential

- S1 detection efficiency determines recoil energy threshold

- Normal fluctuations in S2/S1 in HPXe should offer a huge benefit in electron/nuclear recoil discrimination.
 - F factor ratio of 11 in enters exponentially in overlap of gaussian

Ton-scale concept: DM + $0v-\beta\beta$

- The number of PMTs should remain small, or smaller.
- The optical detection efficiency should be maximized to increase sensitivity to low-energy nuclear recoils.
- Approach: use wavelength shifting (WLS) plastic
 - cover the TPC interior completely
 - pipe light to remote PMTs, shielded by copper

Ton-scale concept...

• Problem: xenon light is in VUV - 173 nm

- WLS plastic response maximum is at 300 nm
- WLS plastic response at 173 nm is ~zero !!
- What to do?
- Use gaseous molecular wavelength shifters
 - Trimethylamine (TMA) and/or Triethylamine (TEA)
 - TMA and TEA fluoresce efficiently in bands 285 310 nm
 - TMA and TEA may also display Penning effect in xenon
 - Complex behavior expected with density and fraction!

Back to Basics

A parallel-plate ionization chamber with optical sensing, using 4 PMTs that look at the gap from the sides

We will measure both light and charge as functions of density, electric field, and fraction of TEA/TMA,

We can have eight PMTs if useful to do so.

We may modify the cathode and convert to TPC mode to study energy resolution and EL range

Pisameet 2012

Perspective

- Gas phase offers superb energy resolution, event visualization and flexibility in operation
- Electroluminescent gain stage is the key element for near-intrinsic energy resolution for 0v-ββ search
- Energy resolution may provide superb discrimination between electron and nuclear recoils through S2/S1
- Can switch easily from enriched to depleted xenon, with real benefits to both searches

Conclusion...

- Is this a true story or a fairy-tale?
 - We should know which in less than a year

Conclusion...

- Is this a true story or a fairy-tale?
 - We should know which in less than a year...
- Gas detectors continue to offer surprises!
 - "You can see a lot by looking" Yogi Berra

A Diagonal Muon Track - "reconstructed"; Signal depends on radius in chamber

Pisameet 2012

Virtues of Electro-Luminescence in HPXe

- <u>Linearity</u> of gain versus pressure, HV
- Immunity to <u>microphonics</u>
- <u>Tolerant</u> of losses due to impurities
- Absence of positive ion <u>space charge</u>
- Absence of <u>ageing</u>, <u>quenching</u> of signal
- Isotropic signal dispersion in space
- <u>Trigger</u>, <u>energy</u>, and <u>tracking</u> functions are accomplished with <u>optical detectors</u>

Xenon10 data

Photo-Luminescence of PMMA

Different WLS nature observed for two PMMA Samples

