

Characterization of irradiated SiPM for the TOP detector at the Belle II experiment

Padova meeting 28/3/2024

Ezio Torassa, Roberto Stroili, <u>Jakub Kandra</u> INFN Padova

Tests with irradiated modules in Padova

- In Belle II, MCP-PMTs with extended lifetime have been installed and they have limited lifetime depending on accumulated charge.
- We are trying to understand if they eventually can be replaced with SiPMs.
- We irradiated 24 SiPM modules with different neutron fluxes and tested by laser.
- Eight of them are processed to study their response.
- We analyze SiPM modules before, after irradiation and after annealing at 150 °C

	Index	Producer	Dimension	ension Pitch Distance Neutron 1 MeV		Charge	Time	
			$[mm \times mm]$	$[\mu m]$	[cm]	$\rm eg/cm^2$ fluence	[mC]	[h]
	8	FBK	3×3	15	18.36	$1.0 \cdot 10^{10}$	2.86	5.88
	9	FBK	3×3	15	18.24	$5.0 \cdot 10^{9}$	1.41	2.90
	10	FBK	3×3	15	33.24	$1.0 \cdot 10^{9}$	0.94	1.93
	11	FBK	1×1	15	15.86	$2.0 \cdot 10^{10}$	4.26	8.77
	12	FBK	1×1	15	30.86	$1.0 \cdot 10^{10}$	8.07	16.61
	13	FBK	1×1	15	15.74	$5.0 \cdot 10^{9}$	1.05	2.16
	14	FBK	1×1	15	30.74	$1.0 \cdot 10^{9}$	0.80	1.65
	15	Hamamatsu	3×3	50	33.46	$1.0 \cdot 10^{9}$	0.95	1.95 2
Jakub Kandra, INFN Padova								

Content

Done:

- Irradiated SiPM modules in Padova
- We process data and extract photon spectra using two different methods:
 - Simple method
 - Markov method removing background from waveform.
- Gain as function of bias voltage for extraction breakdown voltage
- Gain as function of overvoltage (difference between bias and breakdown voltages)
- Table with breakdown voltages and slopes
- Comparison time resolutions (for Markov and simple algorithms):
 - First, second, third and others (including second and third) using recognized spectra
- Darkcount rates for SiPMs

To Do:

- Review current results to fix problematic fits
- Irradiation campaign in Legnaro from 22th to 24th April 2024

Extraction breakdown voltage for SiPM #14

Fit of photon spectra

SiPM #13 700 events 600 500 Number of 300 200 400600 1400 200Residual of Histogram of ds1_plot_x and Projection of dmodel 60 E Residual 20 - 20 - 40 60 200 400 600 800 1000 1200 1400 Pull of Histogram of ds1_plot_x and Projection of dmodel Pulls 0 200 400 600 800 1000 1200 1400

ADC counts [ubits]

- Photon spectra are extracted
- Photon spectra are fitted sum of convolution poissonian and gaussian distribution to extract gain and average of photons
- From gain we can extract breakdown voltage

Gain as function of bias voltage

Jakub Kandra, INFN Padova

Gain as function of overvoltage

Jakub Kandra, INFN Padova

Breakdown voltages at temperatures for SiPMs

Index of SiPM		11	12	13	14	15	
Proc	lucer	FBK	FBK	FBK	FBK	Hamamatsu	
Dimension	[mm×mm]	1×1	1×1	1×1	1×1	3×3	
Pitch	η [μm]	15	15	15	15	50	
Temperature		Breakdown	Breakdown	Breakdown	Breakdown	Breakdown	
[°C]	Status	voltage [V ₀]					
	No-irradiated	32.36 ± 0.80	32.70 ± 0.84	32.24 ± 1.16	32.43 ± 1.88	38.10 ± 2.24	
20	Irradiated	32.55 ± 1.75	32.03 ± 0.27	31.87 ± 0.49	32.13 ± 0.75	37.57 ± 0.98	
	Annealed	32.29 ± 0.66	32.14 ± 0.57	31.91 ± 0.65	32.19 ± 0.75	38.00 ± 0.93	
	No-irradiated	33.72 ± 1.98	32.39 ± 0.51	31.71 ± 0.82	32.17 ± 1.52	38.31 ± 2.24	
10	Irradiated	32.13 ± 1.25	31.87 ± 0.35	31.36 ± 0.57	31.86 ± 0.32	37.22 ± 0.48	
	Annealed	32.00 ± 1.03	31.91 ± 0.67	31.52 ± 0.61	32.16 ± 0.53	37.46 ± 1.03	
	No-irradiated	31.43 ± 1.41	32.07 ± 1.22	31.33 ± 1.68	31.87 ± 1.40	38.34 ± 8.88	
0	Irradiated	28.79 ± 2.70	31.21 ± 0.53	31.30 ± 0.41	31.52 ± 0.34	36.98 ± 0.52	
	Annealed	31.63 ± 0.65	31.57 ± 0.37	31.49 ± 0.38	31.54 ± 0.53	37.19 ± 0.53	
	No-irradiated	30.61 ± 2.58	31.65 ± 1.45	31.31 ± 0.82	31.64 ± 1.05	37.25 ± 9.79	
-10	Irradiated	31.65 ± 0.63	31.24 ± 0.42	30.94 ± 0.36	31.29 ± 0.32	36.63 ± 0.31	
	Annealed	31.38 ± 0.42	31.26 ± 0.46	30.95 ± 0.41	31.18 ± 0.67	36.67 ± 1.02	
	No-irradiated	31.79 ± 1.59	31.18 ± 1.52	30.70 ± 0.98	31.13 ± 2.00	37.92 ± 6.71	
-20	Irradiated	30.95 ± 0.53	30.92 ± 0.30	30.61 ± 0.33	30.94 ± 0.50	36.19 ± 0.82	
	Annealed	30.85 ± 0.86	30.94 ± 0.25	30.66 ± 0.38	30.71 ± 0.42	36.25 ± 1.62	
-	No-irradiated	31.45 ± 0.62	31.33 ± 0.60	30.87 ± 0.81	30.91 ± 0.99	36.17 ± 1.42	
-30	Irradiated	30.48 ± 0.37	30.61 ± 0.40	30.43 ± 0.32	30.50 ± 0.83	35.80 ± 0.46	
	Annealed	30.19 ± 1.78	30.61 ± 0.27	30.43 ± 0.52	30.37 ± 1.05	36.20 ± 0.98	
	No-irradiated	30.66 ± 3.92	30.96 ± 0.35	30.61 ± 0.28	30.84 ± 0.71	34.55 ± 5.39	
-35	Irradiated	30.58 ± 0.48	30.47 ± 0.43	30.21 ± 0.37	30.08 ± 1.45	35.57 ± 0.58	
	Annealed	30.45 ± 1.61	30.43 ± 0.40	30.32 ± 0.40	30.27 ± 1.33	35.68 ± 1.75	
40	No-irradiated	30.71 ± 0.70	30.68 ± 0.46	30.16 ± 0.97	30.65 ± 0.58	35.71 ± 0.84	
-40	Irradiated	30.19 ± 0.79	30.54 ± 0.61	30.14 ± 0.45	30.35 ± 0.28	36.59 ± 2.63	

- For Hamamatsu device the breakdown voltages agree with previous measurements
- For some FBK devices, the breakdown voltages do not agree with previous measurements.
- After finishing studies related to breakdown voltage, we will continue with extraction time resolution

Slopes at temperatures for SiPMs

Index of SiPM		11	12	13	14	15
Producer		FBK	FBK	FBK	FBK	Hamamatsu
Dimension	Dimension [mm×mm]		1×1	1×1	1×1	3×3
Pitch	Pitch $[\mu m]$		15	15	15	50
Temperature	Temperature					
[°C]	Status	Slope	Slope	Slope	Slope	Slope
	No-irradiated	2.815 ± 0.045	4.215 ± 0.070	3.894 ± 0.091	3.822 ± 0.144	5.050 ± 0.201
20	Irradiated	2.098 ± 0.072	3.739 ± 0.020	3.526 ± 0.034	3.490 ± 0.051	4.633 ± 0.081
	Annealed	4.342 ± 0.057	4.376 ± 0.049	4.267 ± 0.055	4.348 ± 0.064	6.301 ± 0.103
	No-irradiated	4.546 ± 0.179	4.101 ± 0.042	3.670 ± 0.061	3.787 ± 0.116	6.023 ± 0.240
10	Irradiated	3.043 ± 0.075	3.771 ± 0.026	3.388 ± 0.038	3.458 ± 0.022	4.709 ± 0.040
	Annealed	4.317 ± 0.088	4.366 ± 0.058	4.158 ± 0.050	4.460 ± 0.047	6.131 ± 0.113
	No-irradiated	2.754 ± 0.080	4.003 ± 0.100	3.522 ± 0.122	3.707 ± 0.106	6.928 ± 1.103
0	Irradiated	1.454 ± 0.081	3.563 ± 0.038	3.443 ± 0.028	3.405 ± 0.023	4.917 ± 0.046
	Annealed	4.217 ± 0.054	4.282 ± 0.031	4.249 ± 0.032	4.201 ± 0.044	6.239 ± 0.060
	No-irradiated	2.188 ± 0.118	3.856 ± 0.116	3.606 ± 0.061	3.764 ± 0.081	4.764 ± 0.850
-10	Irradiated	2.757 ± 0.035	3.661 ± 0.031	3.353 ± 0.025	3.383 ± 0.022	4.950 ± 0.028
	Annealed	4.194 ± 0.036	4.236 ± 0.039	4.058 ± 0.034	4.101 ± 0.055	6.076 ± 0.113
	No-irradiated	2.798 ± 0.092	3.657 ± 0.116	3.365 ± 0.069	3.486 ± 0.145	6.756 ± 0.820
-20	Irradiated	2.668 ± 0.029	3.580 ± 0.021	3.287 ± 0.022	3.291 ± 0.033	4.876 ± 0.073
	Annealed	4.023 ± 0.069	4.148 ± 0.021	4.002 ± 0.031	3.950 ± 0.033	5.975 ± 0.176
	No-irradiated	3.000 ± 0.038	3.992 ± 0.050	3.700 ± 0.063	3.654 ± 0.075	5.191 ± 0.137
-30	Irradiated	2.384 ± 0.018	3.509 ± 0.028	3.267 ± 0.021	3.159 ± 0.054	4.853 ± 0.041
	Annealed	3.764 ± 0.137	4.066 ± 0.023	3.970 ± 0.042	3.874 ± 0.083	6.349 ± 0.114
	No-irradiated	2.315 ± 0.191	3.792 ± 0.028	3.578 ± 0.021	3.658 ± 0.054	4.031 ± 0.412
-35	Irradiated	2.435 ± 0.024	3.472 ± 0.031	3.207 ± 0.024	3.025 ± 0.090	4.808 ± 0.052
	Annealed	3.923 ± 0.129	4.013 ± 0.033	3.953 ± 0.032	3.873 ± 0.105	5.914 ± 0.191
40	No-irradiated	3.077 ± 0.044	4.217 ± 0.040	3.808 ± 0.079	4.021 ± 0.049	5.952 ± 0.092
-40	Irradiated	1.900 ± 0.031	3.547 ± 0.045	3.201 ± 0.030	3.170 ± 0.018	6.098 ± 0.294

Time resolution for first photon peak for SiPM #14

Time resolution for first photon peak

Time resolution of first peak for SiPM #14 at 0°

Jakub Kandra, INFN Padova

Time resolution for other photon peaks

Time resolution of other peaks for SiPM #14 at 0°

Jakub Kandra, INFN Padova

Dark count rate for SiPM #14

Dark count rate

Backup

Time resolution for second photon peak

Time resolution of second peak for SiPM #14 at 0°

Jakub Kandra, INFN Padova

Time resolution for third photon peak

Time resolution of third peak for SiPM #14 at 0°

Jakub Kandra, INFN Padova