
KL efficiency integration in the Systematic Framework $e^+e^- \rightarrow \Phi(K^0_S K^0_L)\gamma_{\rm ISR}$

- Clean environment
- Strong signature: 1 hard photon and 2 pion tracks (KS)
- Correct the γ ISR energy using the 2-body decay hypothesis of the initial (e^+e^-) and intermediate (Φ) states
- Calculate the recoil/missing momentum of γ ISR and KS to get the expected 4-momentum of KL \Rightarrow *tag events*
- Search KLM clusters and/or ECL clusters along the pMiss direction
 probe events

Ideal workflow (as for the PID systematic studies)

First step: fit the recoil mass distribution for both tag and probe events, and check for any effects of changes in the shape of the recoil mass distribution before and after cluster selections

Data: phigamma skim release 6, exp18

MC: MC15rd, hhISR collection, exp18

Tag events:

- $E^*(\gamma) > 4.7 \text{ GeV}$
- γ ISR energy correction
- $0.490 \text{ GeV/c}^2 < m(\text{KS}) < 0.504 \text{ GeV/c}^2$
- $-0.85 < \cos\theta(\text{KS}) < 0.95$
- $0.4 \text{ GeV/c}^2 < \text{mRecoil} < 0.53 \text{ GeV/c}^2$
- 1.3 GeV/c < pMiss < 4.5 GeV/c
- 1 KS and 1 γ ISR which pass previous cuts

KLM cluster candidates:

• KLM cluster with the smallest angle to pMiss

ECL cluster candidates:

• ECL cluster with the smallest angle to pMiss

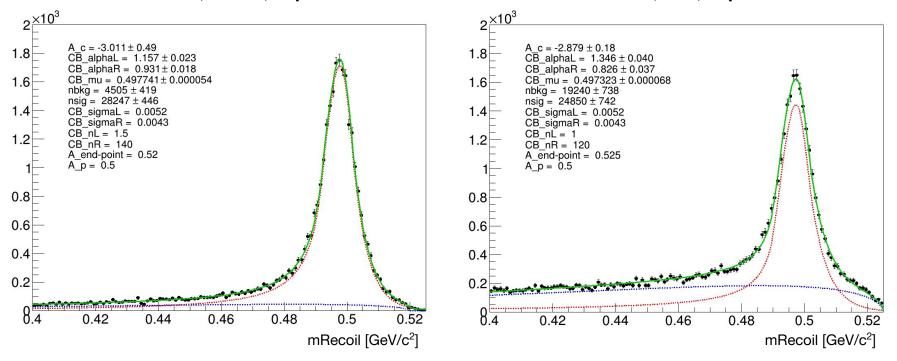
KLM&ECL cluster candidates:

- KLM cluster with the smallest angle to pMiss
- ECL cluster with the smallest angle to pMiss

WB: to determine KL-ID efficiency, additional selections must be applied (KLM cluster layers, ECL cluster energy, ...)

Fit model:

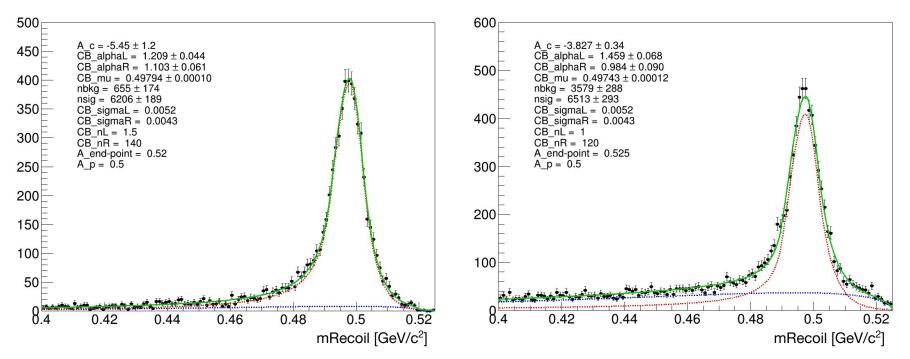
- *Signal peak:* double sided Crystal Ball function (mu, sigmaL, sigmaR, alphaL, nL, alphaR, nR)
- **Background:** Argus function (c, end-point, p)
- Fit the recoil mass distribution for MC events
- Comparison between the signal yield estimated with the fit and the true signal yield
- Fit the recoil mass distribution for real data


NB: true signal events are selected from the true KLs produced in the MC that are tagged

	MC	Data		
CB_mu	free	free		
CB_sigmaL	0.0052	0.0052		
CB_sigmaR	0.0043	0.0043		
CB_alphaL	free	free		
CB_nL	1.5	1		
CB_alphaR	free	free		
CB_nR	140	120		
A_c	free	free		
A_end-point	0.52	0.525		
A_p	0.5	0.5		
nsig	free	free		
nbkg	free	free		

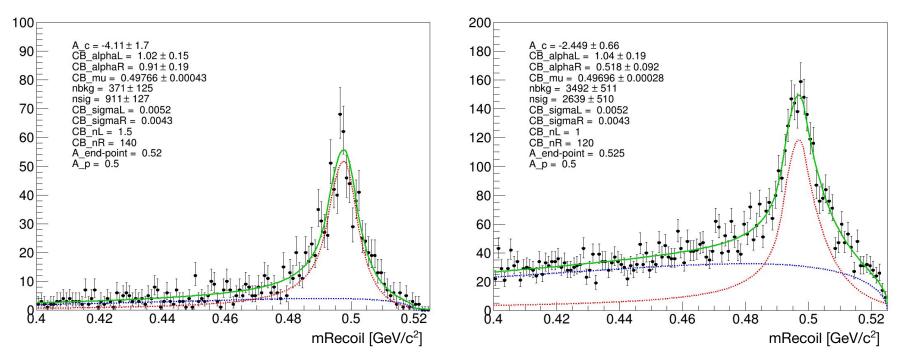
Tag events

MC15rd, hhISR, exp18


Data, rel6, exp18

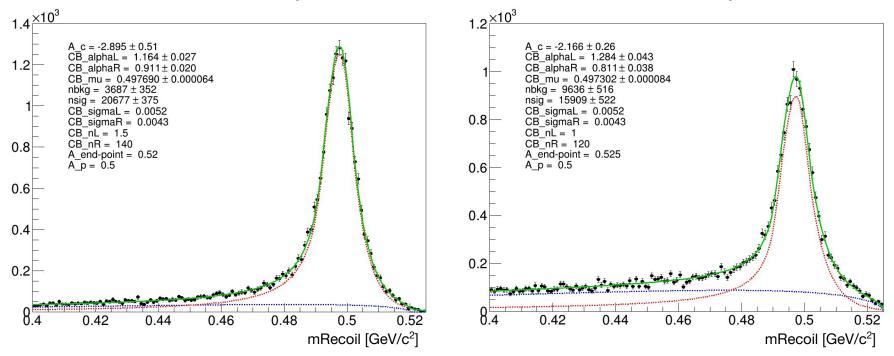
Probe events: KLM cluster candidates

MC15rd, hhISR, exp18


Data, rel6, exp18

Probe events: ECL cluster candidates

MC15rd, hhISR, exp18


Data, rel6, exp18

Probe events: KLM&ECL cluster candidates

MC15rd, hhISR, exp18

Data, rel6, exp18

First step: fit the recoil mass distribution for both tag and probe events, and check for any effects of changes in the shape of the recoil mass distribution before and after cluster selections

- ➡ We observe changes in the background shape before and after cluster selections, in both the MC and data
- We observe **changes in the background shape based on missing moment region**, in both the MC and data

Second step:

- calculate sWeights for tag events only
- determine the signal yields for probe events by counting the sWeighted events that pass cluster selections
 - → comparison between the signal yield for sWeighted events and the signal yield estimated with the fit

	MC15rd, hhISR, exp18					Data, rel6, exp18		
	МС	Fit	diff. (%)	sWeights	diff. (%)	Fit	sWeights	diff. (%)
TAG	28659	28247	1.4	28247	/	24850	24850	/
KLM	6511	6206	4.7	6488	4.5	6513	7164	10
ECL	879	911	3.6	900	1.2	2639	2023	23
KLM&ECL	21078	20677	1.9	20674	0.01	15909	14999	5.7

Second step:

- calculate sWeights for tag events only
- determine the signal yields for probe events by counting the sWeighted events that pass cluster selections
- ➡ For real data, the relative difference between the signal yields is quite large in all the cases (KLM, ECL and KLM&ECL)

KL efficiency integration in the Systematic Framework

Produce only ntuples without fitting the recoil mass distribution in the Systematic Framework

- Allow users perform the fit before and after their selections
- Provide some examples of analysis scripts

Provide ntuples with sWeigths calculated centrally once

- One sWeight for each representative (KLM and/or ECL) cluster selection
- Accept large systematic uncertainties in the estimation of signal yields
- This might be error prone for inexperienced users

To do:

- Add MC15rd usd, ccbar, tautau (for exp18)
- Check all possible cluster variables to be used for selections
- Start producing ntuples in the Systematic Framework