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PART I. History
  1974, infancy of QCD, doubts in everything, everything is
  NEW ✎ ✎ ✎ Epic, legendary times ☺ 

First Application was  deep inelastic scattering;
Neither theory nor data were good enough!

Second QCD application: ΔI = 1/2 Rule:

TPI-MINN-99/30, HEP-TH-1804

HOW PENGUINS STARTED TO FLY

The 1999 Sakurai Prize Lecturea

ARKADY VAINSHTEIN

Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455

A mechanism explaining a strong enhancement of nonleptonic weak decays was
suggested in 1975, later to be dubbed the penguin. This mechanism extends Wil-
son’s ideas about the operator product expansion at short distances and reveals an
intricate interplay of subtle features of the theory such as heavy quark masses in
Glashow-Iliopoulos-Maini cancellation, light quarks shaping the chiral properties
of QCD, etc. The penguins have subsequently evolved to play a role in a variety
of fields in present-day particle phenomenology. I will describe the history of this
idea and review its subsequent development. The recent measurement of direct
CP violation in K decays gives a new confirmation of the penguin mechanism.

1 History of the idea

It was an exciting period, with Quantum Chromodynamics (QCD) emerging

as the theory of strong interactions, when three of us – Valya Zakharov, Misha

Shifman and I – started in 1973 to work on QCD effects in weak processes.

The most dramatic signature of strong interactions in these processes is the so

called ∆I = 1/2 rule in nonleptonic weak decays of strange particles. Let me

remind you what this rule means by presenting the experimental value for the

ratio of the widths of KS → π+π− and K+ → π+π0
decays

Γ(KS → π+π−)

Γ(K+ → π+π0)
= 450 . (1)

The isotopic spin I of hadronic states is changed by 1/2 in the KS → π+π−

weak transition and by 3/2 in K+ → π+π0
, so the ∆I = 1/2 dominance is

evident.

What does theory predict? The weak interaction has a current×current

form. Based on this, Julian Schwinger suggested
1

to estimate nonleptonic

amplitudes as a product of matrix elements of currents, i.e. as a product of

semileptonic amplitudes. This approximation, which implies that the strong

aTalk at the 1999 Centennial Meeting of the American Physical Society, March 20-26, on
the occasion of receiving the 1999 Sakurai Prize for Theoretical Particle Physics.
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Expected ∼ 9/4

Guido Altarelli, L. Maiani, Octet Enhancement of Nonleptonic Weak Interactions in Asymptotically 
Free Gauge Theories, Phys.Lett. B52 (1974) 351-354;

M.K. Gaillard, Benjamin W. Lee , Δ I = 1/2 Rule for Nonleptonic Decays in Asymptotically Free Field 
Theories,  Phys.Rev.Lett. 33 (1974) 108. 



The operator basis of SU(3)R invariant operators of d = 6 consists of six
four-fermion operators. The first four operators are constructed from left-
handed quarks (and their antiparticles, which are right-handed),

O1 = s̄LγµdL ūLγµuL − s̄LγµuL ūLγµdL, (8f , ∆I = 1/2),

O2 = s̄LγµdL ūLγµuL + s̄LγµuL ūLγµdL + 2s̄LγµdL d̄LγµdL

+2s̄LγµdL s̄LγµsL, (8d, ∆I = 1/2),

O3 = s̄LγµdL ūLγµuL + s̄LγµuL ūLγµdL + 2s̄LγµdL d̄LγµdL

−3s̄LγµdL s̄LγµsL, (27, ∆I = 1/2),

O4 = s̄LγµdL ūLγµuL + s̄LγµuL ūLγµdL

−s̄LγµdL d̄LγµdL, (27, ∆I = 3/2) . (5)

Every quark field is a color triplet qi and summation over color indices is
implied, q̄2γµq1 = (q̄2)i γµ(q1)i. What is marked in the brackets are the SU(3)
and isospin features of the operators.

Two more four-fermion operators entering the set contain also right-handed
quarks (in SU(3)R singlet form),

O5 = s̄LγµtadL

�
ūRγµtauR + d̄RγµtadR + s̄RγµtasR

�
, (8, ∆I = 1/2),

O6 = s̄LγµdL

�
ūRγµuR + d̄RγµdR + s̄RγµsR

�
, (8, ∆I = 1/2). (6)

Operators O5 and O6 are different by color flow only.
The operator basis we have introduced is recognized now (some doubts

were expressed in the literature at the beginning). The standard set12 used
presents some linear combinations of O1−6. Actually, the set is five instead of
six combinations, the completness of the basis was lost on the way, although
it is not important within the Standard Model.

2.1 Evolution

The effective Hamiltonian (2) may remind the reader of the Fermi theory of
beta decay with its numerous variants for four-fermion operators. While in
many respects the analogy makes sense, the difference is that the standard
model together with QCD allows us to fix all coefficients ci. In the leading
logarithmic approximation the evolution of the effective Hamiltonian at µ > mc

was found in Refs.4,5. Penguins do not appear in this range and the result for
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ūRγµuR + d̄RγµdR + s̄RγµsR

�
, (8, ∆I = 1/2). (6)

Operators O5 and O6 are different by color flow only.
The operator basis we have introduced is recognized now (some doubts

were expressed in the literature at the beginning). The standard set12 used
presents some linear combinations of O1−6. Actually, the set is five instead of
six combinations, the completness of the basis was lost on the way, although
it is not important within the Standard Model.

2.1 Evolution

The effective Hamiltonian (2) may remind the reader of the Fermi theory of
beta decay with its numerous variants for four-fermion operators. While in
many respects the analogy makes sense, the difference is that the standard
model together with QCD allows us to fix all coefficients ci. In the leading
logarithmic approximation the evolution of the effective Hamiltonian at µ > mc

was found in Refs.4,5. Penguins do not appear in this range and the result for

7

+

includes ΔI = 3/2

K. Wilson, 1969, → (MW)κ enhancement/suppression

J. Schwinger, 1964 → 9/4

AMGL, 1974 → ln (MW/Λ) enhancement/suppression

AMGL: Good news - ✌ ✌ ✌ Inspirational, O1 enhanced O+ suppressed;
Bad news: 9/4 ∼ 10 rather than 450 ☹ ☹ ☹ 



SVZ, penguins, 1974 (Heavy Quarks Enter the Game)

W

g

dLsL

u u(d , s ) (d , sR )

u (c ) u (c )

RRRR R

GIM cancellation: believed (mc2 - mu2)/Λ2

                      actual  ln (mc2 /Λ2)     ✈ ✈ ✈

← J. Ellis et al.
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−s̄LγµdL d̄LγµdL, (27, ∆I = 3/2) . (5)

Every quark field is a color triplet qi and summation over color indices is
implied, q̄2γµq1 = (q̄2)i γµ(q1)i. What is marked in the brackets are the SU(3)
and isospin features of the operators.

Two more four-fermion operators entering the set contain also right-handed
quarks (in SU(3)R singlet form),

O5 = s̄LγµtadL

�
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ūRγµuR + d̄RγµdR + s̄RγµsR

�
, (8, ∆I = 1/2). (6)

Operators O5 and O6 are different by color flow only.
The operator basis we have introduced is recognized now (some doubts

were expressed in the literature at the beginning). The standard set12 used
presents some linear combinations of O1−6. Actually, the set is five instead of
six combinations, the completness of the basis was lost on the way, although
it is not important within the Standard Model.

2.1 Evolution

The effective Hamiltonian (2) may remind the reader of the Fermi theory of
beta decay with its numerous variants for four-fermion operators. While in
many respects the analogy makes sense, the difference is that the standard
model together with QCD allows us to fix all coefficients ci. In the leading
logarithmic approximation the evolution of the effective Hamiltonian at µ > mc

was found in Refs.4,5. Penguins do not appear in this range and the result for

7

Dμ Gμνa →

One of two penguins,
coefficient is rather small,
BUT

LR chiral structure. Chiral enhancement:

 

factor
m2

c −m2
u

m2
W

was universal, which is the reason why the effect of heavy quarks was over-
looked. We found instead that:

(i) The cancellation is distance dependent. Denoting r = 1/µ, we have

m2
c −m2

u

µ2
, for mc � µ ≤ mW ;

log
m2

c

µ2
, for µ� mc . (2)

No suppression below mc!

(ii) Moreover, new operators appearing in the effective Hamiltonian at dis-
tances larger than 1/mc are qualitatively different – they contain right-
handed light quark fields in contrast to the purely left-handed structures
at distances much smaller than 1/mc (see the next section for their ex-
plicit form). It was surprising that right-handed quarks become strongly
involved in weak interactions in the Standard Model with its left-handed
weak currents. The right-handed quarks are coupled via gluons which
carry no isospin; for this reason new operators contribute to ∆I = 1/2
transitions only.

(iii) For the mechanism we suggested it was crucial that the matrix elements
of novel operators were much larger than those for purely left-handed
operators. The enhancement appears via the ratio

m2
π

mu + md
∼ 2 GeV ,

which is large due to the small light quark masses. The small values of
these masses was a new idea at the time, advocated in 1974 by Heiri
Leutwyler7 and Murray Gell-Mann8. The origin of this large scale is not
clear to this day but it shows that in the world of light hadrons there is,
besides the evident momentum scale ΛQCD, some other scale, numerically
much larger.

Thus, the explanation of the ∆I = 1/2 enhancement comes as a nontriv-
ial interplay of OPE, GIM cancellation, the heavy quark scale, and different

3

versus Λ∼ 200 MeV; factor of 10 in ampl.

Leutwyler, Gell-Mann, Weinberg: mu,d quark 
mass terms very small



☞ Coleman-Witten, 1980: ‘Proof’ of χSB in large-N QCD
☞ Leutwyler and many others: Development of χPT ☞ 

☞ Matrix elements in lattice QCD (Martinelli and others) 

Qualitatively and semi-quantitatively we are on the safe 
ground and in chartered waters, together with penguins. 

High precision theoretical predictions are still elusive 
because of the large-distance dynamics.

Penguins are much better off in heavier quark decays, bs→γ
W

g

b s

( )

t t



PART II. Present
Chiral symmetry restoration versus nonrestoration in 

highly excited states

Outline
“Theory of QCD strings is hard to develop!
For long strings (high excitations) it should
be much easier.”
                      Divine revelation/Common wisdom

✷ Nonlinear versus linear realization
✷ Regge phenomenology
✷ Quasiclassical long string
✷ AdS/CFT and related approaches 
✷ ✷ ✷ Conclusions
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Chiral Symmetry→Goldstone vs. Linear: 

in Ref. [8] on the basis of the two-dimensional ’t Hooft model [9, 10], is inapplicable
in four-dimensional QCD.

2 Preliminaries

How do we know that two mesons belong to one and the same chiral multiplet?:

For illustration purpose let us consider a simple case of U(1)L×U(1)R chiral sym-
metry,2 having in mind its generalization to SU(2)L×SU(2)R. In the linear repre-
sentation the symmetry generators V and A act as

V |±� = |±� , A|±� = |∓� , (1)

where |±� are states of the opposite parity whose masses are degenerate, M+ =
M− .

The matrix element of the axial current aµ between any opposite-parity states
generically has the following form:

�+|aµ|−� = g(q2)(p++p−)ν

�
gµν−

qµ qν

q2

�
= g(q2)

�
(p++p−)µ−qµ

M2
+−M2

−

q2

�
,

(2)
where q = p+ − p− is the momentum transfer and we assume, for simplicity, that
|±� are spin-0 particles (generalization to higher spins is straightforward). The
specific form above is dictated by conservation of the axial current, we implied the
chiral limit of QCD. The pole at q2 = 0 reflects propagation of the massless pion.

In the linear realization, when |+� and |−� are partners, their masses are degen-
erate, M2

+ =M2
−, the coupling to the pion vanishes and the axial coupling

gA = g(0) = 1 (3)

to provide that the axial generator A =
�
d3x a0 acts as in Eq. (1).

When the chiral symmetry is spontaneously broken the masses are not equal and
the coupling to pion does not vanish, it is given by the generalized Goldberger–
Treiman relation which follows from Eq. (2),

gπ+− = f−1
π gA(M2

+−M2
−) . (4)

There is no constraints on the axial coupling gA because the matrix element of the
axial generator A vanishes, �−|A|+� = 0, as it is seen from Eq. (2) at �q = 0.

2 Thus, we are neglecting dynamical breaking of U(1)A symmetry.
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 SU(Nf)L×SU(Nf)R →SU(Nf)V

If

✷

✷ 
✷



Glozman et al conjectured:  At high energies the chiral condensate 
becomes less important. Pions decouple → Asymptotically linear 
realization,

gA→1,  ΔM ≡ M+-M- →0
inside the given representation
while gA→0 for “outside” transitions

How fast?

✷ If the distance ΔM2chiral << ΔM2radial ∼ n0 

A natural scaling law would be:

               ΔM2chiral ∼ M-2 ∼ (n -1 , J -1) 



  

Two-dimensional ‘t Hooft model presents a (primitive)
example of this type: no asymptotic restoration.

Parity degeneracy:

This is a shorthand for degeneracy of the states belonging to one and the same chiral
multiplet. Two opposite parity states may be (approximately) degenerate and, at the
same time, not belong to one and the same chiral multiplet provided we deal with the
Nambu-Goldstone mode of realization of the chiral symmetry. For instance, ρ� may
be approximately degenerate with a1, but the chiral partner to a1 is ρ rather than
ρ�. Therefore, the parity degeneracy is equivalent to the chiral multiplet degeneracy
only if the chiral symmetry is realized in the linear mode.

In the Regge picture with linear trajectories the meson resonances are lying
equidistantly on straight lines M2(J) = (J − J0)/α� in the plane {M2, J}.
Different trajectories differ only by values of the intercept J0. As we discussed above
this picture implies that for parity partners there is no degeneracy in M2 on the
leading trajectories, i.e., the ones with no radial excitations. A particular example
is ρ and a1 trajectories. Although M2 is not degenerate,

∆(M2
±) = M2

+ − M2
− = ∆J0/α� ∼ Λ2 , (8)

the mass difference diminishes for higher excitations,

∆M± ∼
Λ2

M
∼ (n−1/2, L−1/2) . (9)

However, this mass difference is of the same order as the gap between neighboring
states which are not chiral partners, i.e., ∆M± ∼ Mhad.

“Botched” chiral symmetry restoration:

In discussed above regime of linear R Regge trajectories the mass splittings in the
chiral multiplets of highly excited mesons scale as

∆(M2
±) = M2

+ − M2
− ∼ Λ2 , (10)

so that
∆M± ∼ M−1 ∼ (n−1/2, L−1/2) . (11)

One can say that in fact this is the absence of a genuine χSR since in this case
the values of ∆M± ∼ Mhad in the given chiral multiplet are of the same order of
magnitude as the splittings of the mesons lying on distinct daughter trajectories. The
splitting ∆M± still tends to zero at n, L → ∞ but in a minimal manner. Moreover,
there are no obvious reasons why gA must approach unity in the transitions between
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We will argue (from linearity of Regge trajectories, quasiclassical
picture, etc.): 

         For highly excited states 

and gA ∼ n-1/2 for all axial transition amplitudes.

  The Nambu-Goldstone mode persists!



Regge Phenomenology

Linear equidistant quark-meson trajectories (except M2, J=0, 0);

No parity degeneracy on the leading trajectory

If the trajectories do not start converging “later” → asymptotic
linear realization is not restored ...

2

xxxxx

a) Nambu!Goldstone mode b)

Transition

Linear

Nambu!Goldstone

g  ~ 0
A

g  ~1/2
A

xxxxx g  ~ 1
A

g  > 1
A

M M
2

Figure 2: Two scenarios of the chiral symmetry realization for high excitations. Open circles
denote ρ and its excitations, open squares a1 and its excitations. Arrows show the values of the
axial constant gA for the corresponding transitions.

one can say that this is the case since Eqs. (11) and (12) imply that ∆M2
±/M2 ∼ 1/n.

Although it is sufficient for symmetry restoration of inclusive objects (such as scalar
versus pseudoscalar correlators) this degree of fall-off is insufficient for the genuine
asymptotic restoration. Growth of distances with energy appears naturally in quasi-
classical string picture of hadrons. In this picture, discussed in the next section, the
high excitations correspond to extended objects with growing sizes.

A reservation is in order here. There is a possibility of a more subtle “dislocation”
— a dislocaiton not in the spectrum but in the values of gA’s. This possibility is
depicted in Fig. 2. As an example, this figure displays ρ, a1 and their excitations. As-
sume that for the lowest-lying states, ρ and a1 and their close neighbors, there is a set
of nonvanishing gA’s for a number of positive-negative parity amplitudes connecting
various levels. The chiral symmetry is implemented in the Nambu–Goldstone mode.
For higher excitations this pattern can either continue indefinitely (see Fig. 2 a),
or, after a transition domain where gA’s are reshuffled (Fig. 2 b), be replaced by a
“monogamous” behavior, with gA = 1 for the opposite parity states from one and
the same level and gA = 0 for the opposite parity states from different levels. In
this scenario with increasing J the transition domain must shift to higher levels. We
are aware of no model predicting such a behavior, but this is a logical possibility,
albeit very unlikely. In such a contrived scenario asymptotic restoration of the chiral
symmetry could take place.
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Contrived scenario
(not realized in the 
quasiclassical
picture)   →

All gA’s different, ≠ 1

gA ≈ 1



Quasiclassical (long) stringin the Lagrangian are set to zero, i.e. we will deal with the chiral limit. In this
convention the string tension is Λ2, while the ρ-meson mass is Λ.)

!L     ~ M/max

q q

p p

Figure 3: The quark and antiquark inside a highly excited meson, viewed quasiclassically,
“oscillate” being attached to the end-points of the string that does not break at Nc → ∞.

The mass of a high radial excitation of the meson state (say, ρn) can be deter-
mined from a quasiclassical quantization condition. The mass Mn can be presented
as

Mn = 2p + σr . (14)

The mass Mn = 2p0 where p0 is the momentum at zero separation. At nonzero
separation quarks create a flux tube of the chromoelectric field with the maximal
length

�∗ =
Mn

σ
. (15)

The quasiclassical quantization condition implies

� �∗

0

p(r) dr = πn (16)

with p(r) = (Mn − σr)/2. Then we immediately arrive at

M2
n = 4πσn ∼ Λ2 n . (17)

(Let us parenthetically note that asymptotically linear n dependence of M2
n was

analytically obtained in the two-dimensional ’t Hooft model [9,10] where linear con-
finement is built in. In this case the next-to-leading correction is logarithmic in n.
It would be interesting to understand this fact qualitatively.)

A similar quasiclassical estimate for a spinning string implies linearity of M2 in
the angular momentum L. In fact, if both nr and L �= 0, Eq. (17) stays valid with
the substitution

n → nr + L . (18)

The degeneracies following from (17) and (18) include the ones associated with the
(asymptotic) chiral symmetry.
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L ∼ M

Γtot ∼ (1/N) M ∼ (1/N) Λ n1/2        (CNN, 1979)

The # of channels ∼ n; each has Γ∼ (1/N) Λ n-1/2

A→Vπ  amplitude ∼ (εiεf)|pπ|∕N1/2 ∼ (εiεf) ΔM2gA/fπ→

At maximum  gA ∼ Λ/M ∼ n-1/2

{π

(PSZ ‘05)



A part of the spectral degeneracy comes from spin independence.
(Chromo)magntic charges are screened in the vacuum!

An upper bound on spin-spin 
         ∼ Λ-2L-3 ∼ Λ n-3/2;   ΔM2 ∼ 1/n

(L+nr)1/2
↑

✷ String degeneracy:

               M = F(L+nr)[1+O(1/n, 1/L)]

ΔM2 ∼ 1/n



AdS/CFT & AdS/QCD
(a) Sakai & Sugimoto (top-down)
(b) Karch, Katz, Son & Stephanov (bottom-up)
(c) Casero, Kiritsis, Paredes (mixed)

Holographic description of hadrons with
the fifth coordinate z is used.
SS placed Nf  test D8 - D8 brane
pairs in the background of  Nc  D4 branes 
compactified on SUSY breaking S1. 

of the superstring theory by anti-periodic boundary conditions for fermions. The

quarks are introduced by Nf test D8-D8 pairs living in dimension orthogonal to

S1. They are associated with strings connecting a D4 brane with D8 or D8, the

UL(Nf ) × UR(Nf ) chiral symmetry of QCD is realized as a gauge symmetry of the

Nf D8-D8 pairs.

In the limit of large Nc and large coupling the supergravity approximation to

string theory is applied. The solution for the metric is characterized by existence

of the horizon, U > UKK, in the radial coordinate U transverse to the D4 branes.

As U → UKK the radius of S1 shrinks to zero and D8/D8 branes merge to form a

single component of the D8-branes, see Fig. 4. Only the diagonal U(Nf ) survives on
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Figure 4: A sketch of D8 and D8 branes from [?].

the resultant D8 brane. This explicitly shows spontaneous breaking of the UL(Nf )×
UR(Nf ) chiral symmetry.

In application to the vector, axial-vector and spin-zero fields the above construc-

tion generates the action

SSS
= κ

�
d4x dz Tr

�
K−1/3 1

2
F 2

µν + K F 2
µz

�
(19)

where

K = 1 + z2 , κ =
λ Nc

108π3
. (20)

This expression is written in five dimensions, z is the holographic coordinate. Bound-

aries at positive and negative z-asymptotics correspond to V ±A combinations of the

gauge fields while Az is associated with the pseudoscalar field. The conformal sym-

metry is softly broken; one-dimensional quantum mechanics in the the holographic
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The massless pion is built in and does 
not decouple from high excitations. 
Nambu-Goldstone mode



5 Chiral symmetry: linear realization
Refer also

to Bardeen

and Hill who

considered

linear real-

ization of the

light-heavy

quark

mesons, such

as B’s

z M2 nr L

SSS = κ

�
d4xdz Tr [K−1/2F 2

µν/2+KF 2
µz] K = 1+z2 κ = λNc/108π3

(24)

SKKSS =

�
d4xdz eΦ(z)√g

�
−|DX|2+3|X|2−

1

4g2
5

(F 2
L+F 2

R)
�

Φ = z2 g2
5 = 12π2/Nc

(25)

If both left- and right-handed SU(Nf)’s are linearly realized, hadronic states

must fall into degenerate multiplets of the full chiral symmetry. The degeneracy

is lifted by an SU(Nf)L × SU(Nf)R → SU(Nf)V spontaneous breaking of the

symmetry that dies off with energy (or the excitation number n, which is the same).

Let us first briefly review an appropriate representation theory [32].

Our next task will be an estimate of δMn versus n = nr + L at n � 1 where

δMn is the mass difference in particular chiral representations, for instance, the mass

difference between the scalar and pseudoscalar mesons or the vector and axial-vector

ones.

The large-Nc limit sets an appropriate theoretical framework for consideration

of excited mesons. As for excited baryons, there is no reason for their widths to be

suppressed at Nc → ∞. Therefore, theoretical analysis of highly excited baryonic

states becomes problematic, as at n � 1 they should form a continuum. Empirically,

isolation of excited baryon resonances from existing hadronic data seems possible, and

data seem to indicate restoration of the full chiral symmetry for excited baryons [2,

20–22]. Representations of unbroken SU(2)L×SU(2)R for baryons had been studied

long ago, even before the advent of QCD [32].

In terms of the quark fields the SU(Nf)L × SU(Nf)R chiral symmetry is

conveniently represented in terms left- and right-handed Weyl spinors, qL,R =
(1 ∓ γ5)q/2,

[qL]ifα , [qR]if̄α̇ , (26)

where α, α̇ = 1, 2 are spinorial indices of the Lorentz group, i = 1, . . . , Nc is the

color index and f, f̄ = 1, . . . , Nf are subflavor indices of two independent, left and

right, SU(Nf). The chiral symmetry transformations are

qf
L → Lf

g qg
L , qf

R → Rf̄
ḡ qḡ

R , (27)
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QM eigenvalues of the hologhaphic coordinate z
give M2 in 4D. Characteristic z ∼ n1/2.

“ρ-a1” splittings in KKSS are due to the X
field (containing pion and its scalar partner). 

KKSS: X→ const. ➭M2+-M2- ∼1/n BUT trajectories 
NONlinear
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CKP: X→ z,   ➭M2+-M2- ∼const. 
Trajectories are linear & equidistant
BUT➭Nambu-Goldstone mode



Conclusions

✷ Linearity of the Regge trajectories & quasiclassical 
picture of long strings imply persistence of the 
Nambu-Goldstone mode of the chiral symmetry 
realization for high excitations.



Happy Birthday, Luchano! Many 
happy returns of the day!


