> Maiani-70
> Symposium in Honor of Luciano Maiani on the
> Occasion of his 7oth Birthday
> Roma, September 21-22, $\mathbf{2 0 1 1}$
> Dipartimento di Fisica, Universita' degli Studi
> "Sapienza"

Chiral Symmetry in QCD and super-QCD and its implications

M. Shifman

William Fine Theoretical Physics Institute University of Minnesota

PART I. History

1974, infancy of QCD, doubts in everything, everything is $N E W$ Epic, legendary times \odot

First Application was deep inelastic scattering;
Neither theory nor data were good enough!

Second QCD application: $\triangle I=1 / 2$ Rule:

$$
\frac{\Gamma\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(K^{+} \rightarrow \pi^{+} \pi^{0}\right)}=450
$$

Expected ~ 9/4

Guido Altarelli, L. Maiani, Octet Enhancement of Nonleptonic Weak Interactions in Asymptotically Free Gauge Theories, Phys.Lett. B52 (1974) 351-354;
M.K. Gaillard, Benjamin W. Lee, $\Delta \mathrm{I}=1 / 2$ Rule for Nonleptonic Decays in Asymptotically Free Field Theories, Phys.Rev.Lett. 33 (1974) 108.

$$
\begin{array}{r}
\mathcal{O}_{1}=\bar{s}_{L} \gamma_{\mu} d_{L} \bar{u}_{L} \gamma^{\mu} u_{L}-\bar{s}_{L} \gamma_{\mu} u_{L} \bar{u}_{L} \gamma^{\mu} d_{L}, \quad\left(8_{\mathbf{f}}, \Delta I=1 / 2\right) \\
\mathcal{O}_{+}=\bar{s}_{L} \gamma_{\mu} d_{L} \bar{u}_{L} \gamma^{\mu} u_{L}+\bar{s}_{L} \gamma_{\mu} u_{L} \bar{u}_{L} \gamma^{\mu} d_{L} \\
\text { includes } \Delta \mathrm{I}=3 / 2
\end{array}
$$

J. Schwinger, $1964 \rightarrow$ 9/4
K. Wilson, 1969, $\rightarrow\left(M_{W}\right)^{\mathrm{K}}$ enhancement/suppression

AMGL, $1974 \rightarrow \ln \left(M_{w} / \Lambda\right)$ enhancement/suppression

AMGL: Good news - Inspirational, O_{1} enhanced O_{+}suppressed; Bad news: 9/4~10 rather than 450 © © © ©

SVZ, penguins, 1974 (Heavy Quarks Enter the Game)

GIM cancellation: believed $\left(m_{c}{ }^{2}-m_{u}{ }^{2}\right) / \wedge^{2}$ actual $\ln \left(m_{c}{ }^{2} / \Lambda^{2}\right)$

$\leftarrow \mathrm{J}$. Ellis et al.

$$
\begin{aligned}
& \bar{s}_{L} \gamma_{\mu} t^{a} d_{L} \mathbf{D}_{\mu} \mathbf{G}^{\mu v a} \rightarrow \\
& \mathcal{O}_{5}=\bar{s}_{L} \gamma_{\mu} t^{a} d_{L}\left(\bar{u}_{R} \gamma^{\mu} t^{a} u_{R}+\bar{d}_{R} \gamma^{\mu} t^{a} d_{R}+\bar{s}_{R} \gamma^{\mu} t^{a} s_{R}\right), \quad(8, \Delta I=1 / 2) . \\
& \\
& \text { One of two penguins, } \\
& \text { Coefficient is rather small, } \\
& \text { BUT }
\end{aligned}
$$

LR chiral structure. Chiral enhancement:
$\frac{m_{\pi}^{2}}{m_{u}+m_{d}} \sim 2 \mathrm{GeV}$ versus $\Lambda \sim 200 \mathrm{MeV}$; factor of 10 in ampl .
Leutwyler, Gell-Mann, Weinberg: mu,d quark mass terms very small

Coleman-Witten, 1980: 'Proof' of XSB in large-N QCD
Leutwyler and many others: Development of XPT
(3atrix elements in lattice QCD (Martinelli and others)

Qualitatively and semi-quantitatively we are on the safe ground and in chartered waters, together with penguins. High precision theoretical predictions are still elusive because of the large-distance dynamics.

Penguins are much better off in heavier quark decays, bs $\rightarrow \gamma$

$g(\gamma)$

PART II. Present

Chiral symmetry restoration versus nonrestoration in highly excited states

Outline

"Theory of QCD strings is hard to develop! For long strings (high excitations) it should be much easier."

Divine revelation/Common wisdom

* Nonlinear versus linear realization
* Regge phenomenology
* Quasiclassical long string
* AdS/CFT and related approaches
* * * Conclusions

Chiral Symmetry \rightarrow Goldstone vs. Linear:

$\operatorname{SU}\left(N_{f}\right)\left\llcorner\times S U\left(N_{f}\right) R \rightarrow S U\left(N_{f}\right) \vee\right.$

If $| \pm\rangle$ are opposite parity states, the axial current a^{μ}

$$
\begin{aligned}
&\langle+| a^{\mu}|-\rangle=g\left(q^{2}\right)\left(p_{+}+p_{-}\right)_{\nu}\left(g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}\right) \\
&=g\left(q^{2}\right)\left[\left(p_{+}+p_{-}\right)_{\mu}-q_{\mu} \frac{M_{+}^{2}-M_{-}^{2}}{q^{2}}\right]
\end{aligned}
$$

* Linear realization:

$$
M_{+}^{2}=M_{-}^{2} \quad g_{A}=g(0)=1
$$

Nonlinear realization:

$$
g_{\pi+-}=f_{\pi}^{-1} g_{A}\left(M_{+}^{2}-M_{-}^{2}\right) \quad \leftarrow \underset{\text { relation }}{\text { generalized Goldberger-Treiman }}
$$

* No constraints on g_{A}, the axial charge vanishes!

Glozman et al conjectured: At high energies the chiral condensate becomes less important. Pions decouple \rightarrow Asymptotically linear realization,

$$
g_{A} \rightarrow 1, \quad \Delta M \equiv M_{+}-M_{-} \rightarrow 0
$$

inside the given representation while $\mathrm{g}_{\mathrm{A}} \rightarrow 0$ for "outside" transitions

How fast?

* If the distance ΔM^{2} chiral $\ll \Delta M^{2}$ radial $\sim n^{0}$

A natural scaling law would be:

$$
\Delta M^{2} \text { chiral } \sim M^{-2} \sim\left(n^{-1}, J^{-1}\right)
$$

We will argue (from linearity of Regge trajectories, quasiclassical picture, etc.):

For highly excited states

$$
\begin{aligned}
& M_{+}^{2}-M_{-}^{2}=\Delta J_{0} / \alpha^{\prime} \sim \Lambda^{2} \\
& a_{1} \quad \rho
\end{aligned}
$$

and $\mathrm{g}_{\mathrm{A}} \sim \mathrm{n}^{-1 / 2}$ for all axial transition amplitudes.

The Nambu-Goldstone mode persists!

Two-dimensional 't Hooft model presents a (primitive) example of this type: no asymptotic restoration.

Regge Phenomenology

Linear equidistant quark-meson trajectories (except $M^{2}, J=0,0$);
No parity degeneracy on the leading trajectory

$$
\sqrt{7}
$$

If the trajectories do not start converging "later" \rightarrow asymptotic linear realization is not restored ...

Contrived scenario (not realized in the quasiclassical picture) \rightarrow

$$
\text { All gA's different, }=1
$$

Quasiclassical (long) string

The mass M_{n}

$$
M_{n}=2 p+\sigma r
$$

Quantization

$$
\int_{0}^{\ell_{*}} p(r) d r=\pi n \quad p(r)=\left(M_{n}-\sigma r\right) / 2 \quad \ell_{*}=\frac{M_{n}}{\sigma}
$$

gives

$$
M_{n}^{2}=4 \pi \sigma n \sim \Lambda^{2} n
$$

When $L \neq 0$

$$
n \rightarrow n_{r}+L
$$

$$
\begin{gathered}
L \sim M \\
\Gamma_{\text {tot }} \sim(1 / N) M \sim(1 / N) \wedge n^{1 / 2} \quad(C N N, 1979)
\end{gathered}
$$

(PSZ `05)
The \# of channels $\sim n$; each has $\Gamma \sim(1 / N) \wedge n^{-1 / 2}$
$A \rightarrow V_{\pi}$ amplitude $\sim\left(\varepsilon_{i} \varepsilon_{f}\right)\left|\vec{p}_{\pi}\right| / N^{1 / 2} \sim\left(\varepsilon_{i} \varepsilon_{f}\right) \Delta M^{2} g_{A} / f_{\pi}$

At maximum $\quad g_{A} \sim \Lambda / M \sim n^{-1 / 2}$

A part of the spectral degeneracy comes from spin independence. (Chromo)magntic charges are screened in the vacuum!

An upper bound on spin-spin

$$
\sim \Lambda^{-2} L^{-3} \sim \Lambda n^{-3 / 2} ; \quad \Delta M^{2} \sim 1 / n
$$

* String degeneracy:

$$
\begin{aligned}
M= & F\left(L+n_{r}\right)[1+O(1 / n, 1 / L)] \\
& \uparrow \\
& \left(L+n_{r}\right)^{1 / 2}
\end{aligned}
$$

$\Delta M^{2} \sim 1 / n$

AdS/CFT \& AdS/QCD

(a) Sakai \& Sugimoto (top-down)
(b) Karch, Katz, Son \& Stephanov (bottom-up)
(c) Casero, Kiritsis, Paredes (mixed)

Holographic description of hadrons with the fifth coordinate z is used.
SS placed N_{f} test D8 - D8 brane pairs in the background of N_{c} D4 branes compactified on SUSY breaking S_{1}.

$$
\begin{gathered}
S^{\mathrm{SS}}=\kappa \int d^{4} x d z \operatorname{Tr}\left[K^{-1 / 3} \frac{1}{2} F_{\mu \nu}^{2}+K F_{\mu z}^{2}\right] \\
K=1+z^{2}, \quad \kappa=\frac{\lambda N_{c}}{108 \pi^{3}}
\end{gathered}
$$

The massless pion is built in and does not decouple from high excitations.
Nambu-Goldstone mode

$$
\begin{gathered}
S^{\mathrm{KKSS}}=\int d^{4} x d z \mathrm{e}^{\Phi(z)} \sqrt{g}\left[-|D X|^{2}+3|X|^{2}-\frac{1}{4 g_{5}^{2}}\left(F_{L}^{2}+F_{R}^{2}\right)\right] \\
\Phi=z^{2} \quad g_{5}^{2}=12 \pi^{2} / N_{c}
\end{gathered}
$$

QM eigenvalues of the hologhaphic coordinate z give M^{2} in 4D. Characteristic $z \sim n^{1 / 2}$.
" ρ - a_{1} " splittings in KKSS are due to the X field (containing pion and its scalar partner).

KKSS: $X \rightarrow$ const. $\triangle M^{2}{ }_{+}-M^{2}-\sim 1 / n$ BUT trajectories NONlinear

CKP: $X \rightarrow z, \quad \searrow M^{2}+M^{2}-\sim$ const.
Trajectories are linear \& equidistant BUT \triangle Nambu-Goldstone mode

Conclusions

* Linearity of the Regge trajectories \& quasiclassical picture of long strings imply persistence of the Nambu-Goldstone mode of the chiral symmetry realization for high excitations.

Happy Birthday, Luchano! Many happy returns of the day!

