STRESS TENSOR FROM STATISTICAL MECHANICS

J.H.Irving, J.G.Kirkwood (Dynamical point of view, classical) The Journal of Chemical Physics 18 , 817 (1950)
S.Morante, G.C.Rossi, M.Testa (Statical point of view, Quantum Mechanical) The Journal of Chemical Physics 125 , 034101 (2006)
G.C.Rossi, M.Testa (Virtual Works and active deformation) The Journal of Chemical Physics 132 , 074902 (2010)

This problem has a formal close relationship with

Ward Identities in Quantum Field Theory

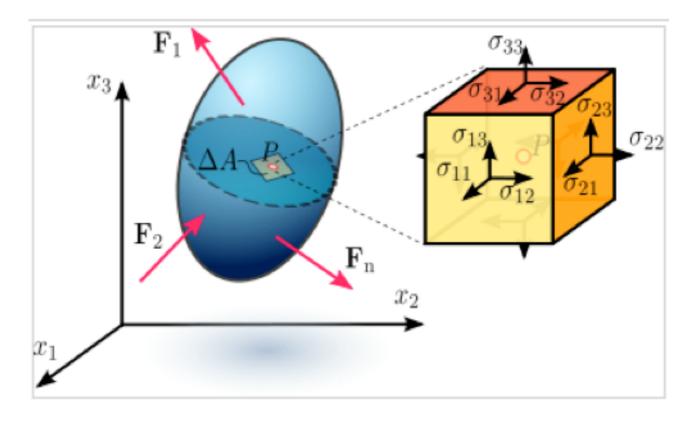
Applications in Material Science, Biology...

Characterization of the Stress Tensor

a) Equilibrium conditions

b) Work done during a deformation

a) Equilibrium conditions



Under the hypothesis of contact forces

$$dF^i = \tau^i_k n^k d\Sigma$$

So that the medium acts on the portion inside the surface $\boldsymbol{\Sigma}$ through the force

$$F_{\Sigma}^{i} = \int_{\Sigma} \tau^{i} n^{k} d\Sigma = \int_{V} \partial_{k} \tau^{ik} dV$$

In the presence of an external force (e.g. gravity) per unit volume

$$df_{ext}^{i}(\mathbf{r}) = F_{ext}^{i}(\mathbf{r})dV$$

we have the equilibrium condition

$$\int_{V} \left(F_{ext}^{i}(\mathbf{r}) + F_{\Sigma}^{i} \right) dV = 0$$

Due to arbitrariness of V

$$F^{i}_{ext}(\mathbf{r}) + \partial_{k} \tau^{ik}(\mathbf{r}) = 0$$

b) Work performed during a deformation

A deformation is defined by

$$r' = r + \varepsilon(r)$$

and gives rise to the deformation tensor $\eta^{ab}(r)$

$$\eta^{ab}(\mathbf{r}) = \frac{1}{2} \left[\partial^a \varepsilon^b(\mathbf{r}) + \partial^b \varepsilon^a(\mathbf{r}) \right]$$

The deformation $\eta^{ab}(\mathbf{r})$ changes the metric of the solid (manifold)

$$ds^2 \rightarrow ds'^2 = ds^2 + 2\eta_{ab}dx^a dx^b$$

and produces a work δW

$$\delta W = -\int_{V} \tau^{ab} (\mathbf{r}) \eta_{ab} (\mathbf{r}) dV$$

$$(\delta W = pdV)$$

STATISTICAL MECHANICS

Partition Function

$$Z = \int dp \, dq \exp(-\beta H(q, p))$$

$$H(p,q) = \sum_{i=1}^{N} \frac{(\mathbf{p}_{i})^{2}}{2m} + U(q) + \sum_{i=1}^{N} U_{ext}(q_{i})$$

where (translation and rotation invariant forces)

$$q_{ij} = \sqrt{\left(\mathbf{q}_{ij}\right)^2}$$

$$\mathbf{q}_{ij} = \mathbf{q}_i - \mathbf{q}_j$$

For short range potentials (existence of the stress tensor) U(q)

does not depend on q_{ij} for $q_{ij} > \xi$, where ξ is a microscopic scale.

Weak
$$U_{ext}(q)$$

Connection with Thermodynamics

$$Z = \exp(-\beta A)$$

$$A = U - TS$$

We now consider the canonical diffeomorphism

$$\mathbf{q}_i \rightarrow \mathbf{q}_i' = \mathbf{q}_i + \varepsilon(\mathbf{q}_i)$$

$$p_i^a = \left[\delta_b^a + \varepsilon_b^a(\mathbf{q}_i)\right] p_i^{\prime b}$$
$$i = 1...N$$

with

$$\left. \mathcal{E}_{b}^{a} \left(\mathbf{q}_{i} \right) \equiv \frac{\partial \mathcal{E}^{a} \left(\mathbf{r} \right)}{\partial x^{b}} \right|_{\mathbf{r} = \mathbf{q}_{i}}$$

The measure *dpdq* is invariant and, since this is a change of variables in the partition function, we must have

$$\left. \frac{\delta \log Z}{\delta \varepsilon^a(\mathbf{r})} \right|_{\varepsilon(\mathbf{r})=0} = 0$$

We get (for short range potentials)

$$\frac{\partial}{\partial x^{b}} \left\langle \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{q}_{i}) \left(\frac{p_{i}^{a} p_{i}^{b}}{m} + \frac{1}{2} \sum_{j(\neq i)=1}^{N} q_{ij}^{a} \mathcal{F}_{ij}^{b} (\mathbf{q}) \right) \right\rangle - \left\langle \delta(\mathbf{r} - \mathbf{q}_{i}) \mathcal{F}_{i,ext}^{a} \left[\left\{ \mathbf{q} \right\} \right] \right\rangle = 0$$

where

$$\mathcal{F}_{ij}^{a}(\mathbf{q}) = -\frac{\partial U(q)}{\partial q_{ij}} \frac{q_{ij}^{a}}{q_{ij}}$$

$$\mathcal{F}_{i,ext}^{a} \left[\left\{ \mathbf{q} \right\} \right] = -\frac{\partial U_{ext} \left[\left\{ \mathbf{q} \right\} \right]}{\partial q_{i}^{a}}$$

so that, comparing with the macroscopic equilibrium condition,

$$F^{i}_{ext}(\mathbf{r}) + \partial_{k} \tau^{ik}(\mathbf{r}) = 0$$

we can identify

$$\tau^{ab}(\mathbf{r}) = -\left\langle \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{q}_i) \left(\frac{p_i^a p_i^b}{m} + \frac{1}{2} \sum_{j(\neq i)=1}^{N} q_{ij}^a \mathcal{F}_{ij}^b(q) \right) \right\rangle$$

$$\begin{aligned} q_{ij}^{b} &\equiv q_{i}^{a} - q_{j}^{a} \Longrightarrow q_{i}^{\prime a} - q_{j}^{\prime a} = q_{i}^{a} + \varepsilon^{a} \left(\boldsymbol{q}_{i} \right) - q_{j}^{a} - \varepsilon^{a} \left(\boldsymbol{q}_{j} \right) \approx \\ &\approx q_{i}^{a} + \varepsilon^{a} \left(\boldsymbol{q}_{i} \right) - q_{j}^{a} - \varepsilon^{a} \left(\boldsymbol{q}_{i} \right) + \varepsilon_{b}^{a} \left(\boldsymbol{q}_{i} \right) q_{ij}^{b} = \left[\delta_{b}^{a} + \varepsilon_{b}^{a} \left(\boldsymbol{q}_{i} \right) \right] q_{ij}^{b} \end{aligned}$$

$$\left. \mathcal{E}_b^a \left(\mathbf{q}_i \right) \equiv \frac{\partial \mathcal{E}^a \left(\mathbf{r} \right)}{\partial x^b} \right|_{\mathbf{r} = \mathbf{q}_i}$$

Quantum Statistical Mechanics

$$Z^{qu} = Tr \Big[\exp \Big(-\beta H^{qu} \Big(q, p \Big) \Big) \Big]$$

A canonical transformation corresponds to an unitary transformation

$$Tr\Big[U(\varepsilon)\exp(-\beta H^{qu}(q,p))U^{+}(\varepsilon)\Big] = Tr\Big[\exp(-\beta H^{qu}[q,p,\varepsilon])\Big] =$$

$$= Tr\Big[\exp(-\beta H^{qu}(q,p))\Big]$$

$$H^{qu}[q,p,\varepsilon] = U(\varepsilon)H^{qu}[q,p]U^{+}(\varepsilon)$$

In our case

$$U(\varepsilon) \approx I + \frac{i}{2\hbar} \sum_{j=1}^{N} \left[\boldsymbol{p}_{j} \cdot \boldsymbol{\varepsilon} (\boldsymbol{q}_{j}) + \boldsymbol{\varepsilon} (\boldsymbol{q}_{j}) \cdot \boldsymbol{p}_{j} \right]$$

In fact

$$U(\boldsymbol{\varepsilon})q_i^a U^+(\boldsymbol{\varepsilon}) \approx q_i^a + \boldsymbol{\varepsilon}^a(\boldsymbol{q}_i)$$

$$U(\boldsymbol{\varepsilon})p_i^a U^+(\boldsymbol{\varepsilon}) \approx p_i^a - \frac{i}{\hbar} \left[p_i^a \boldsymbol{\varepsilon}(\boldsymbol{q}_i) \cdot \boldsymbol{p}_i + \frac{1}{2} p_i^a \boldsymbol{p}_i \cdot \boldsymbol{\varepsilon}(\boldsymbol{q}_i) \right]$$

So that

$$\tau^{ab}(\mathbf{r}) = -\left\langle \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{q}_i) \left(\frac{p_i^a p_i^b}{m} + \frac{1}{2} \sum_{j(\neq i)=1}^{N} q_{ij}^a \mathcal{F}_{ij}^b(\mathbf{q}) \right) + \frac{1}{2m} \sum_{i=1}^{N} \left[p_i^b \delta(\mathbf{r} - \mathbf{q}_i) p_i^a + p_i^a \delta(\mathbf{r} - \mathbf{q}_i) p_i^b + \frac{1}{2} p_i^a p_i^b \delta(\mathbf{r} - \mathbf{q}_i) \right] \right\rangle$$

The Virial Theorem applies

UNIQUENESS???

Active point of view

We interpret the canonical transformation as an active (physical)

deformation
$$r' = r + \varepsilon(r)$$

This changes the metric of the body as

$$ds^2 \rightarrow ds'^2 = ds^2 + 2\eta_{ab}dx^a dx^b$$

We can interpret

$$H(q, p, \eta, \varepsilon) = H^{0}(q, p) +$$

$$-\sum_{i=1}^{N} \eta_{ab}(q_{i}) \frac{p_{i}^{a} p_{i}^{b}}{m} - \frac{1}{2} \sum_{j \neq i=1}^{N} \eta_{ab}(q_{i}) q_{ij}^{a} \mathcal{F}_{ij}^{b}(\mathbf{q}_{ij}) - \sum_{i=1}^{N} \varepsilon_{a}(q_{i}) \mathcal{F}_{i,ext}^{a}(\mathbf{q}_{ij})$$

as the hamiltonian of a system evolving on a manifold with metric η_{ab} . In the physical case, of course η_{ab} has zero riemannian curvature (constraint)

Thermodynamically, at constant temperature,

$$dA = -\delta_{rev}W = \int_{V} \tau^{ab}(\mathbf{r})\eta_{ab}(\mathbf{r})dV$$

(Geometrically intrinsic)

Allowing an arbitrary infinitesimal η_{ab} we would have

$$\tau^{ab}(\mathbf{r}) = \frac{\delta A}{\delta \eta_{ab}(\mathbf{r})}\bigg|_{T,\eta=0}$$

On the other hand the external forces are responsible for a work

$$\delta L_{\rm ext} = -\int_{V} F_{ext}^{a}(\mathbf{r}) \varepsilon_{a}(\mathbf{r}) dV$$

(Geometrically extrinsic)

The total work done (by internal and external forces) is

$$\delta L = \int_{V} \tau^{ab}(\mathbf{r}) \eta_{ab}(\mathbf{r}) dV - \int_{V} F_{ext}^{a}(\mathbf{r}) \varepsilon_{a}(\mathbf{r}) dV$$

From the Principle of Virtual Works (mechanical equilibrium) this work must vanish, at equilibrium, under the constraint (flatness)

$$\eta^{ab}(\mathbf{r}) = \frac{1}{2} \left[\partial^a \varepsilon^b(\mathbf{r}) + \partial^b \varepsilon^a(\mathbf{r}) \right]$$

which can be enforced by Lagrange multipliers $\lambda_{ab}(\mathbf{r})$, so that

$$\delta L = \int_{V} \tau^{ab}(\mathbf{r}) \eta_{ab}(\mathbf{r}) dV - \int_{V} F_{ext}^{a}(\mathbf{r}) \varepsilon_{a}(\mathbf{r}) dV +$$

$$-\int_{V} \lambda_{ab}(\mathbf{r}) \left[\eta^{ab}(\mathbf{r}) - \frac{1}{2} \left[\partial^{a} \varepsilon^{b}(\mathbf{r}) + \partial^{b} \varepsilon^{a}(\mathbf{r}) \right] \right] dV = 0$$

Therefore

$$\tau^{ab}(\mathbf{r}) - \lambda^{ab}(\mathbf{r}) = 0$$
 , $F_{ext}^{a}(\mathbf{r}) + \partial_b \lambda^{ab}(\mathbf{r}) = 0$

under the condition

$$\eta^{ab}(\mathbf{r}) = \frac{1}{2} \left[\partial^a \varepsilon^b(\mathbf{r}) + \partial^b \varepsilon^a(\mathbf{r}) \right]$$

This procedure gives the same expression for $au^{ab}(m{r})$ as before and it is (apparently) unique

What about Surface Stresses?

G.C. Rossi, M.Testa in preparation