

### Characterization of irradiated SiPM for the TOP detector at the Belle II experiment

#### Padova meeting 7/3/2024

#### Ezio Torassa, Roberto Stroili, <u>Jakub Kandra</u> INFN Padova

#### Content



#### Done:

- Irradiated SiPM modules in Padova
- Gain as function of bias voltage
- Gain as function of overvoltage
- Time resolution for first photon peak (Markov and simple) for SiPMs with recognized spectra
- Time resolution for all photon peaks using SiPMs with unrecognized spectra

#### To Do:

- Add fitted spectra (one bias voltage ~ 1.0 per temperature per SiPM)
- Check results and provide better fits if needed
- Update table with fitted breakdown voltages with uncertainties
- Time resolution for all photon peaks (Markov and simple) for SiPMs with recognized spectra?
- Time resolution for others than first photon peak (Markov and simple) for SiPMs with recognized spectra?

#### Tests with irradiated modules in Padova



- In Belle II, MCP-PMTs with extended lifetime have been installed and they have limited lifetime depending on accumulated charge.
- We are trying to understand if they eventually can be replaced with SiPMs.
- We irradiated 24 SiPMs modules with different neutron fluxes and tested by laser.
- Eight of them are processed to study their response.
- Collected data are read from modules and analyzed.

|                           | Indor | Draducon  | Dimension        | Pitch     | Distance | Neutron 1 MeV         | Charge | Time   |
|---------------------------|-------|-----------|------------------|-----------|----------|-----------------------|--------|--------|
|                           | Index | Producer  | $[mm \times mm]$ | $[\mu m]$ | [cm]     | $\rm eg/cm^2$ fluence | [mC]   | [h]    |
|                           | 8     | FBK       | $3 \times 3$     | 15        | 18.36    | $1.0 \cdot 10^{10}$   | 2.86   | 5.88   |
|                           | 9     | FBK       | $3 \times 3$     | 15        | 18.24    | $5.0 \cdot 10^{9}$    | 1.41   | 2.90   |
|                           | 10    | FBK       | $3 \times 3$     | 15        | 33.24    | $1.0 \cdot 10^{9}$    | 0.94   | 1.93   |
|                           | 11    | FBK       | $1 \times 1$     | 15        | 15.86    | $2.0 \cdot 10^{10}$   | 4.26   | 8.77   |
|                           | 12    | FBK       | $1 \times 1$     | 15        | 30.86    | $1.0 \cdot 10^{10}$   | 8.07   | 16.61  |
|                           | 13    | FBK       | $1 \times 1$     | 15        | 15.74    | $5.0 \cdot 10^9$      | 1.05   | 2.16   |
|                           | 14    | FBK       | $1 \times 1$     | 15        | 30.74    | $1.0.10^{9}$          | 0.80   | 1.65   |
|                           | 15    | Hamamatsu | $3 \times 3$     | 50        | 33.46    | $1.0 \cdot 10^{9}$    | 0.95   | 1.95 3 |
| Jakub Kandra, INFN Padova |       |           |                  |           |          |                       |        |        |



## SiMP #11



### Gain as function of bias voltage for SiPM #11









Jakub Kandra, INFN Padova





Jakub Kandra, INFN Padova

Vbias







### Gain as function of overvoltage for SiPM #11









Jakub Kandra, INFN Padova





Jakub Kandra, INFN Padova







## Time resolution for first photon peak for SiPM #11



Time resolution of first peak for SiPM #11 at 20°



Jakub Kandra, INFN Padova



Time resolution of first peak for SiPM #11 at 0°



Jakub Kandra, INFN Padova



18

Time resolution of first peak for SiPM #11 at -20°





Time resolution of first peak for SiPM #11 at -35°





# SiMP #12



### Gain as function of bias voltage for SiPM #12





Jakub Kandra, INFN Padova

Vbias















### Gain as function of overvoltage for SiPM #12



















## Time resolution for first photon peak for SiPM #12



32

Time resolution of first peak for SiPM #12 at 20°





Time resolution of first peak for SiPM #12 at 0°



Jakub Kandra, INFN Padova



Time resolution of first peak for SiPM #12 at -20°



Jakub Kandra, INFN Padova



Time resolution of first peak for SiPM #12 at -35°





# SiMP #13


# Gain as function of bias voltage for SiPM #13













Jakub Kandra, INFN Padova









# Gain as function of overvoltage for SiPM #13

Gain as function of overvoltage for SiPM #13 at temperature 20





Jakub Kandra, INFN Padova









Jakub Kandra, INFN Padova







# Time resolution for first photon peak for SiPM #13



Time resolution of first peak for SiPM #13 at 20°



Jakub Kandra, INFN Padova



49

Time resolution of first peak for SiPM #13 at 0°





Time resolution of first peak for SiPM #13 at -20°



Jakub Kandra, INFN Padova



Time resolution of first peak for SiPM #13 at -35°





# SiMP #14



# Gain as function of bias voltage for SiPM #14





Jakub Kandra, INFN Padova











Jakub Kandra, INFN Padova

V<sub>bias</sub>







# Gain as function of overvoltage for SiPM #14



















# Time resolution for first photon peak for SiPM #14



Time resolution of first peak for SiPM #14 at 20°



Jakub Kandra, INFN Padova



Time resolution of first peak for SiPM #14 at 0°



Jakub Kandra, INFN Padova



Time resolution of first peak for SiPM #14 at -20°



Jakub Kandra, INFN Padova





Time resolution of first peak for SiPM #14 at -35°



# SiMP #15



# Gain as function of bias voltage for SiPM #15





Jakub Kandra, INFN Padova

V<sub>bias</sub>





Jakub Kandra, INFN Padova






#### Gain as function of bias voltage







### Gain as function of overvoltage for SiPM #15

















## Time resolution for first photon peak for SiPM #15



Time resolution of first peak for SiPM #15 at 20°



Jakub Kandra, INFN Padova



Time resolution of first peak for SiPM #15 at 0°



Jakub Kandra, INFN Padova



Time resolution of first peak for SiPM #15 at -20°



Jakub Kandra, INFN Padova



Time resolution of first peak for SiPM #15 at -35°





## SiMP #8



## Time resolution for all photon peaks for SiPM #8



Time resolution of all peaks for SiPM #8 at 20°





87

Time resolution of all peaks for SiPM #8 at 0°





Time resolution of all peaks for SiPM #8 at -20°



Jakub Kandra, INFN Padova



Time resolution of all peaks for SiPM #8 at -35°





## SiMP #9



## Time resolution for all photon peaks for SiPM #9



Time resolution of all peaks for SiPM #9 at 20°



Jakub Kandra, INFN Padova



93

Time resolution of all peaks for SiPM #9 at 0°





Time resolution of all peaks for SiPM #9 at -20°



Jakub Kandra, INFN Padova



Time resolution of all peaks for SiPM #9 at -35°





## SiMP #10



## Time resolution for all photon peaks for SiPM #10



Time resolution of all peaks for SiPM #10 at 20°



Jakub Kandra, INFN Padova



99

Time resolution of all peaks for SiPM #10 at 0°





Time resolution of all peaks for SiPM #10 at -20°



Jakub Kandra, INFN Padova









# Backup

#### Breakdown voltages at temperatures for SiPMs



| Index of SiPM              | 11              |       | 12              |       | 13              |       | 14              |       | 15              |       |
|----------------------------|-----------------|-------|-----------------|-------|-----------------|-------|-----------------|-------|-----------------|-------|
| Producer                   | FBK             |       | FBK             |       | FBK             |       | FBK             |       | Hamamatsu       |       |
| Dimension $[mm \times mm]$ | $1 \times 1$    |       | $3 \times 3$    |       |
| Pitch $[\mu m]$            | 15              |       | 15              |       | 15              |       | 15              |       | 50              |       |
|                            | Breakdown       |       | Breakdown       |       | Breakdown       |       | Breakdown       |       | Breakdown       |       |
|                            | voltage $[V_0]$ |       | voltage $[V_0]$ |       | voltage $[V_0]$ |       | voltage $[V_0]$ |       | voltage $[V_0]$ |       |
| Temperature [°]            | non-irr         | irr   |
| 20                         | 33.13           | 32.63 | 33.15           | 32.03 | 32.56           | 31.78 | 32.43           | 32.17 | 38.16           | 37.66 |
| 10                         | 33.78           | 32.20 | 32.06           | 31.77 | 31.93           | 31.60 | 32.22           | 31.89 | 37.73           | 37.08 |
| 0                          | 31.16           | 28.45 | 31.53           | 31.37 | 31.81           | 31.26 | 31.31           | 31.50 | 37.76           | 37.00 |
| -10                        | 31.36           | 31.64 | 31.55           | 30.25 | 30.79           | 30.97 | 31.20           | 31.16 | 37.39           | 36.65 |
| -20                        | 31.19           | 31.06 | 30.95           | 30.94 | 31.20           | 30.71 | 31.43           | 31.05 | 36.88           | 36.16 |
| -30                        | 31.53           | 30.79 | 31.25           | 30.69 | 30.81           | 30.49 | 30.65           | 30.54 | 35.77           | 35.83 |
| -35                        | 30.45           | 30.50 | 30.76           | 30.44 | 30.62           | 30.32 | 30.41           | 29.85 | 35.73           | 35.63 |
| -40                        | 29.97           | 30.16 | 30.59           | 30.40 | 30.05           | 30.29 | 30.48           | 30.35 | 35.26           | 36.66 |

• For Hamamatsu device the breakdown voltages agree with previous measurements

• For some FBK devices, the breakdown voltages do not agree with previous measurements.

• After finishing studies related to breakdown voltage, we will continue with extraction time resolution

### Fit of photon spectra



#### SiPM #13 700 events 600 500 Number of 300 200 400600 1400 200Residual of Histogram of ds1\_plot\_x and Projection of dmodel 60 E Residual 20 - 20 - 40 60 200 400 600 800 1000 1200 1400 Pull of Histogram of ds1\_plot\_x and Projection of dmodel Pulls 0 200 400 600 800 1000 1200 1400 104

ADC counts [ubits]

### • Photon spectra are extracted

- Photon spectra are fitted sum of convolution poissonian and gaussian distribution to extract gain and average of photons
- From gain we can extract breakdown voltage

### Fit of time resolution

- Split photon spectra into two regions: first photon peak (green) and other photon peaks (red)
- For #13 SiPMs, we fit first photon peak (green) and all photon peaks (green + red)



