Carbon Deposition by Film Delamination and X-ray Mirror Curvature Control

Associate Professor Alex A. Volinsky, Ph.D.

Department of Mechanical Engineering

University of South Florida, Tampa, FL 33620

volinsky@eng.usf.edu

www.eng.usf.edu/~volinsky

July 21, 2011, INFN

Alex A. Volinsky

Acknowledgements

Funding: National Science Foundation

NSF International Research Experience for Students (IRES) Program

People:

USF: Mykola Kurta, Michael Weinbaum, Evgeny Shakurov, Grygoriy Kravchenko, Megan Pendergast, Ramakrishna Gunda, James Rachwal, Robert Shields, Nathaniel Waldstein,

Prof. Nathan Crane, Prof. Craig Lusk

TU Dresden: Dirk Meyer, Alexandr Levin, Tillman Leisegang, Hartmut Stöcker, Emanuel Gutmann, Dirk Spitzner, Torsten Weißbach, Irina Shakhverdova

DESY: Dmitri Novikov

X-FEL: Harald Sinn, Germano Galasso, Liubov Samoylova, Fan Yang, Antje Trapp

INFN: Roberto Cimino, David Grosso, Roberto Flammini, Rosanna Larciprete

Current IRES \$150K (with overhead)

3-4 summers, 4-5 students per summer (\$2,000/months + airline ticket) Started in 2010. Grant supports travel and allowance

What Mechanical Engineering students skills are helpful?

- CAD/Design
- Data acquisition
- Mechanics of Materials
- FEM
- Thermodynamics/Heat transfer
- Fluid Mechanics
- Vibrations
- Robotics

Outline

- X-ray optics stability and control, temperature and strain distribution simulations
- Stress relief effects in thin films and multilayers
- Electrowetting experiments

Thin film residual stress

Thermal Total
 Intrinsic -residual
 Epitaxial stress

Consequences

- New equilibrium state
- Failure
- Promotes diffusion

Length scales of stress

- Microscopic
- Macroscopic

Measuring residual stress

Film material strain

- X-ray Diffraction Bragg's law
- Raman spectroscopy

Substrate curvature

- Optical interferometry
- Optical profiling
- Mechanical profiling

Modified Stoney Formulas

TiWN film on 6" Si wafer

Mo/Si Mirror Bending Experiments

Tensile Crack Patterns: Mo/Si

3-point Bending Fixture Improvement

Before modification

Modified fixture

80-100 μm beam displacement,

15-19 N Force,

250-350 MPa max. normal stress due to bending

Alex A. Volinsky

4-Point Bending Fixture

Adjustment screw

Alex A. Volinsky

In-Situ 4-point Bending Fixture. Tension-Compression

Copper Powder Corrections

Alex A. Volinsky

Bending Fixture Preliminary Data

Alex A. Volinsky

Curvature due to temperature gradient T_{7}

 Axisymmetric model of 0.5 mm Si substrate •Steady-state •No films, bare Si $T_{top} = 0$ $^{\circ}C$ PowerGraphics EFACET=1 AVRES=Mat =.026037=.71.0E-03 =.970E-03 $T_{bot} = 100$ °C .970E-03

•Radius of curvature: R = 2 m

Grygoriy Kravchenko

Modeling GIGO problem

Alex A. Volinsky

4" Si Wafer Uniform Heating

Uniform slow heating, wafer becomes flatter with T due to thin SiO_2 layer,

Similar to the simulation results

Temperature gradient with films

Temperature gradient $\Delta T_7 = 20$ °C

Alex A. Volinsky

10

X-ray mirror deformed shape

Alex A. Volinsky

X-ray mirror thermal deformations

Thermal results (Model 1)

Alex A. Volinsky

Si on Glass substrate, 1 W/cm²

Alex A. Volinsky

Si, 300 W/cm² (BESSY)

Curvature

FEM: X-ray mirror thermal deformations

1. X-ray mirror (Si wafer):

- a) Target radius of curvature R = 10 m can be achieved by application of the through-thickness temperature gradient of about 20 $^{\circ}$ C
- b) the upper limit (RT+20 ${\rm C}$) does not exceed the maximum operational temperature of 100 ${\rm C}$

2. Optics element exposed to the X-ray beam:

- a) temperature distribution is almost uniform (in steady-state)
- b) X-ray beam with the power of 1 W/cm² heats the structure up to 15 $\ensuremath{\mathbb{C}}$
- c) minimization or compensation of the thermal expansion mismatch is an effective way to reduce thermal deformations

XFEL Mirror Curvature Control

Alex A. Volinsky

Single cooling surface

Michael Weinbaum

Alex A. Volinsky

Single cooling surface only

Alex A. Volinsky

Setup-backlight with two cooling surfaces

Results- backlighting with two cooling surfaces

Order of magnitude lower distortion

Alex A. Volinsky

Results – film and sym. cooling

Simulation included 100 micron tungsten film with a 36K temperature change

Alex A. Volinsky

Stress relief in diamond/CVD ring monochromator

Liubov Samoylova, XFEL

Alex A. Volinsky

Diamond Monochromator Stress Relief

Useful cut

Stress Relief Through Fracture

Mechanics of Coating Fracture

The strain energy release rate of a stressed coating: (i.e. amount of energy stored in a stressed coating per unit area, J/m^2 , stressed coating is comparable to a loaded spring)

$$G = Z \frac{\left(1 - v_c^2\right)\sigma^2 t}{E_c}$$

Coating will delaminate when the strain energy release rate equals the interfacial toughness, $\Gamma_i(\Psi)$, or its adhesion:

$$G=\Gamma_i(\Psi)$$

The coating will crack when the strain energy release rate equals the coating toughness, $\Gamma_{coating}$:

$$G = \Gamma_{coating}$$

Alex A. Volinsky

Stress Concentration

Stress at the crack tip is magnified by a factor:

For a 100 nm crack or defect with 1 nm tip radius, one would find a **10-fold increase** in the stress levels at the crack tip.

Thermal Stress Mechanics

Thermal stress in the coating: $\sigma_{thermal} = \frac{E_c}{1 - V_c} (\alpha_c - \alpha_s) \cdot \Delta T$ $G = Z \frac{(1 + V_c)E_c(\alpha_c - \alpha_s)^2 \Delta T^2 t}{(1 - V_c)}$

Thermal expansion mismatch causes substantial substrate bending!

Alex A. Volinsky

Work of Adhesion

Total irreversible energy per unit area of delamination extension required to separate the materials at the interface.

Single Layer vs. Superlayer Indentation

Nonbuckled: $\alpha = 1$, Buckled (single,double): $0 < \alpha < 1$

Biaxial Film Stress Relation: $\sigma = \epsilon E/(1-\nu)$

- 1. D.B. Marshall and A.G. Evans, Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination, J. Appl. Phys., **56** (1984) p. 2632-2638.
- 2. J.W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials, in <u>Advances in Applied Mechanics</u>, 1992, Academic Press, Inc.: New York, p. 63-169.
- 3. M.D. Kriese and W.W. Gerberich, Quantitative adhesion measures of multilayer films. J. Mater. Res. 14 (7), p. 3007, 1999

Alex A. Volinsky

Experimental Measurements

Optical Microscope used for blister measurements

- x = blister radius
- a = contact radius of indenter tip
- δ_{pl} = plastic indentation depth

Load-Displacement curve from the indenter

Cu-BASED THIN FILM SYSTEM

Films: 1 μ m W overlayer on top of Cu films (40 nm to 3 μ m) with and without a 10 nm Ti underlayer

- Substrates: Si wafers <100> w/ thermally grown 1.5 µm of SiO₂
- **Processing:** Cleanroom, sputtering in argon (1 μ Torr pump down), no etching.

Cu Film Adhesion

A.A. Volinsky, N.R. Moody, W.W. Gerberich, Acta Mater. Vol. 50/3, pp. 441-466, 2002

Alex A. Volinsky

FIDUCIAL MARK. SEM

PARTIAL BLISTER REMOVAL

Alex A. Volinsky

FIDUCIAL MARKS - SEM

Substrate (SiO₂) side

Sticky tape (Cu) side

50µm 500X

Alex A. Volinsky

AES SCAN

Alex A. Volinsky

AFM MARK MEASUREMENTS

Surface distance	683.74 пм
Horiz distance(L)	683.59 пм
Vert distance	6.808 пм
Angle	0.571 deg
Surface distance	566.54 пм
Surface distance Horiz distance	566.54 пм 566.41 пм
Surface distance Horiz distance Vert distance	566.54 пм 566.41 пм 6.473 пм

Alex A. Volinsky

LINEAR ELASTIC CRACK TIP ANALYSIS

$$u_{el}(r) = \frac{K}{E} \sqrt{\frac{8r}{\pi}}$$

Lawn B., (1993) "Fracture of Brittle Solids", Cambridge University Press, Cambridge

$$K_{I} = \delta_{c} E_{\sqrt{\frac{\pi}{32r_{m}}}}$$

 $K_{I} = 0.3 \text{ MPa} \cdot m^{1/2}$

 $K_{I} = (GE)^{1/2}$

$$G \approx 0.9 \text{ J/m}^2 => K_I = 0.33 \text{ MPa} \cdot \text{m}^{1/2}$$

A.A. Volinsky, M.L. Kottke, N.R. Moody, W.W. Gerberich, Engineering Fracture Mechanics 69, pp. 1511-1515, 2002

Alex A. Volinsky

Auger. Phone Cord Fiducial Marks

SEM

Carbon Map

Mike Kottke

Alex A. Volinsky

Crack Tip Surface Energy

Conventional methods of surface energy measurement (contact angle technique) only work in air. While film is delaminating, its surface energy is reduced.

Fiducial Mark and Nanocrack Zone Formation During Thin Film Delamination, A.A. Volinsky, N.R. Moody, M.L. Kottke, W.W. Gerberich, Philosophical Magazine A, Vol. 82, 2002

UHV-AFM (Prof. Szymonski's group). Create fracture surface in UHV, then use AFM tip pull-off data to calculate surface energy.

50µm 500X

Electrowetting

Drops can be moved by varying electrical field around the drop

Electrowetting Measurement

Electrowetting is typically characterized by the wetting angle

Fitted to Young-Lippman equation assuming parallel plate capacitor

Forces are estimated by modeling surface equilibrium

For many applications electrowetting force is of great interest:

Digital microfluidics, Adaptive cooling, focusing optics, flexible electronics, etc.

 θ = 107 deg

 θ = 68 deg

$$\cos\theta_1 = \cos\theta_o + \frac{\varepsilon_o \varepsilon_r V^2}{2\gamma_{lv} \delta}$$

Alex A. Volinsky

Electrowetting Configurations

Forces are found by differentiating the system energy with respect to the appropriate displacement variable.

Electrowetting Oscillation. DC Voltage

Alex A. Volinsky

Oscillation Explanation: Local Dielectric Defect

Dielectric Defect Results in Mixed-Mode Behavior

Force Measurement Configuration

Alex A. Volinsky

Typical Results

Applied Voltage (V)	Measured Force (μN)	Predicted Force (μN)	Prediction Method
20	6	11	Floating Drop
40	41	44	Floating Drop
60	113	98	Floating Drop
80	505	535	Grounded Drop

Alex A. Volinsky

Y-force in a normal and defective dielectric layer

Alex A. Volinsky

Possible Defect Mechanism

Alex A. Volinsky

Conclusions for Electrowetting Experiments

- Electrowetting oscillation under a DC voltage input
- Proposed an explanation for this behavior based on local dielectric defects
- Introduced a method for measuring electrowetting forces in 2-axes simultaneously
- N.B. Crane, A.A. Volinsky, V. Ramadoss, M. Nellis, P. Mishra, X. Pang, MRS. Proc. Vol. 1052, DD8.1, 2008
 N. Crane, A.A. Volinsky, P. Mishra, A. Rajgadkar, M. Khodayari, Appl. Phys. Lett., Vol. 96, pp. 104103-3, 2010
 N. Crane, P. Mishra, A.A. Volinsky, Review of Scientific Instruments, Vol. 81, pp. 043902-7, 2010

Previously Funded Projects

NACE: "Adhesion Measurements of Thin Films in Corrosive Environments" \$40K

NSF: "Lab-on-a-chip Microchannels

Novel Manufacturing Method" \$80K

+IREE 2007 \$35K

Krakow, Poland

NSF: "Wear-induced Nanoripples in Single Crystals" \$60K

NSF: "Experimental and Computational Investigation of Fracture Patterns in Thin Films and Multilayers" \$250K

+IREE 2008 \$41K Dresen, Germany

TI: "Nanoindentation and Modeling of Low-K Dielectrics for the TI Advanced Microelectronic Interconnects, their Mechanical Characterization and Reliability" \$15K

Alex A. Volinsky

Currently Funded Projects

NSF: "Uncertainty Quantification for the Kinematic Approach to Compliant Mechanism Design" Co-PI with PI C. Lusk (USF) \$370K

NSF: "IRES: International US-Germany Joint Study of X-Ray Optics Thermomechanical Stability and Control" \$150K.

Alex A. Volinsky

Unfunded Projects

Chromium oxide coatings on steel with Qiao, Gao and Pang,

Magnetoelectric layered composites with D.A. Pan (USTB, China)

Alex A. Volinsky

Summary

Hysitron Triboindenter[™] and other equipment available at USF for collaborative research

We provide value added analysis.

Alex A. Volinsky