ATLAS ITk

Marianna Testa on behalf of the LNF ITk group Scientific Committee 8 November 2023

HL-LHC

The LHC will be upgraded to the High Luminosity-LHC (HL-LHC) to produce up to 4000 fb⁻¹ of integrated luminosity until 2040

Requirements for pixel detector at HL-LHC

Instantaneous conditions: pile-up, luminosity

- High trigger rate: 1 MHz
- High granularity: occupancy at 1 %

Integrated effects

Integrated luminosity x10 \rightarrow Radiation hard technologies up to 2.10¹⁶ neq/cm²

A replacement of the current ID detector is by far not enough!

ITk : The New Inner Tracker

All-silicon tracker

ITk (ID)	Area (m²)	# Modules	# Channels (M)
Pixels	13 (1.6)	9164 (2000)	5100 (92)
Strips	165 (61)	17888 (4088)	60 (6.3)

Improved tracking

- Coverage up to |η|<4 (ITk) from |η|<2.5 (ID)
- Finer segmentation:
 - 50x50µm² or 25x100µm²
 - ID: 50 \times 400 $\mu m^2\,$ or 50 \times 250 $\mu m^2\,$
- Reduced material: Carbon Fibre structures, CO₂ cooling with thin Ti tubes walls, advanced serial powering, data link sharing
- Radiation hardness:
 - n-in-p pixel sensors (n-in-n for ID)
 - Thinner sensor 100-150 μ m (200-250 μ m in ID)

ITk Performances

Important LNF contribution to design and simulation, for $|\eta|$ <4 coverage and pixel size decision

ATL-PHYS-PUB-2019-014 ITk Pixel TDR ITk Strip TDR

ITk Pixel Detector

Modules: two main module types, quad & triplet.

	Layer
	L0 bar
	L0 ring
	L1
	L2-4
40	

Triplet

Quad

ayer	Module type	Sensor type	Sensor thickness [um]	Pixel size [um²]
0 barrel	Triplet	3D n-in-p	150	25x100
0 rings	Triplet	3D n-in-p	150	50x50
1	Quad	Planar n-in-p	100	50x50
.2-4	Quad	Planar n-in-p	150	50x50

IS to be replaced after 2000fb⁻¹ to reduce radiation damage. L0 placed 34 mm from beam pipe.

ITk Pixel Outer Endcap

- Three layers of half-rings (HR) loaded into carbon fibre halfcylinders
- HR are strategically placed in z to provide hermeticity in n
- Modules on both sides of HR \perp to beampipe $\rightarrow \Phi$ hermeticity
 - >= 5 pixels overlap in φ .
- Each HR side holds one **serial-powering** chain:
 - 16/22/26 Modules for Layer2/3/4

Half-rings are C-foam / C-fibre "sandwiches" with embedded cooling pipe and fixation lugs

Cooling lines, data and electrical cables, run between outer rims of rings and inner surface of cylinder

Sensor, Front-End Chip and Modules

- Planar Sensor n-in-p
- Front-End Chip by RD53 collaboration
 - Read out trigger frequency at 1 MHz
 - 4 data lines at 1.28 Gbps
 - Uplink sharing
 - Rad-hard up to 500 MRad
 - 65nm technology
 - Chip size: 400 x 384,
 - 50x50 μ m² pixels, 2.0 x 2.1 cm²
 - Shunt-LDO regulator for serial powering
 - 8912 data links / endcap from modules to off-detector electronics

Modules: 4 FE chips bump-bonded to sensor

Cu-Kapton flex hybrid glued to sensor for connection to power, slow controls and data distribution

Marianna Testa

- Wire bonds connect the flex to the FE chip(s)
- "pigtails" connecting modules to power / data
- 1172 modules/endcap

7

ITk Pixel Outer Endcap at LNF

Assembly and commissiong of one outer pixel endcap

- 0. Half-ring reception test
- 1. insertion of services cooling lines, data/pwr cable and half-ring with silicon modules
- 2. Testing functionality, cooling with CO_2
- 3. Thermo-cycles test with detector Off
- 4. Mating couple of half-shells to form a layer
- 5. Shipment to cern

Clean room refurbishment at LNF per EC assembly

Large Clean room designed for:

- mechanical assembly, electical testing, cooling
- hosting climate chamber, transfer CO₂ cooling lines, dry air / N₂ distribution
- expected to be completed in Q1 2024

support platform, M. Battisti

Pixel Outer Endcap: Testing during Integration

- 0. Half-ring reception test
- insertion of services cooling lines, data/pwr cable-and halfring with silicon modules
- 2. Testing functionality cooling with CO₂
- 3. Thermo-clycles test with detector Off
- 4. Testing again functionality cooling with CO₂
- 5. Mating couple of half-shells to form a layer
- 6. Testing functionality of complete layer cooling with CO₂
- 7. Bring layer on platform
- 8. Repeat for the three layers
- 9. Final test on tasport box

New Infrastructures

Dry air with dew point down to -70 C

Large Climate Chamber

 CO_2 cooling LUCASZ =

Light Use Cooling Appliance for Surfaces Zone

Climate Chamber commissioning

G. Cesarini, E. Dane', M. Testa, Z. Chubinidze

Thermal Cycle

- Aim: test services stability under thermomechanics stresses due to dfferent CTE of materials
- Temperature: 45C +40C
 (-55 C + 60C for prototypes)
- Dew point < -10 C of T to avoid condensation

Commissioned

<figure>

- Functional test:
- Aim: use climate chamber as testing box with CO₂ cooling and power on
 - T ~ +20-C
 - Dew point < 60 C under CO_2 triple point
- Commissioned

CO₂ cooling plant commissioning

C. Ligi, G. Cesarini

- Transfer lines design in clean room
- Installation in 2024

- Constructed and commissioned in 2021 at DESY
- Successful test with merging lines at LNF
- \rightarrow 20 g/s CO₂ flow

 Successful Integration with interlock system

Tooling

Transport Tooling: design in progress

Transport/Test Box: design in progress

Services support: design in progress

B. Ponzio, E. Capitolo

System Test

Single and multi-module setup

- High Speed data adapter board designed and produced for Pixel community
- DAQ with optical readout
- Data Transmission test

Z. Chubinidze, M. Gatta, M. Beretta, M. Testa

- Develop interlock logics
 - NTC, cooling, power, environmental sensors
- Develop of scalable DCS system

ITk Services

- Power/DCS cables:
- Design, Prototypes and Production
 - Quality Control
 - Thermo-mechanical cycles

- Extension twinax data cables
 - Design Prototypes and Production
 - Data transmission test

P. Albicocco, M. Testa, Z. Chubinidze

ITk Patch Panel 1

Environmental gas sealing and Faraday cage closure of the detector volume.

Mechanical structure: design and production

Design and mockup of services routing:

Design and production of heaters

- Feedthrough for **8488** twinax cable (OS) 4604 twinax cable
- 14 lines (OS) Cooling lines. 2 lines (IS)
- Power cables
- Inside N₂ overpressure 4mb
- Internal Dew point < 60 C
- External Dew point < 30 C
- Heaters to avoid surfaces

LNF responsabilities

Inner wall Outer flange Inner flange Outer wall IPT end plate Outer region Inner region patch panels patch panels Data and pwr cables, cooling lines and manifold

17 S. Tomassini, F. Rosatelli, E. Dane', B. Buadze, G. Cesarini, M. Beretta, B. Ponzio, E. Capitolo, S. Tomassini

PP1 Activities: Cable Routing Design

F. Rosatelli, E. Dane', S. Tomassini

Data cables routing to the feedthrough

Pwr cables routing to connectors

Cooling distribution

PP1 Activities: Cooling distribution design

E. Dane'

PP1 Activities: Mockup

Heater

20 F. Rosatelli, E. Dane', B. Buadze, G. Cesarini, M. Beretta, B. Ponzio, E. Capitolo, S. Tomassini + NA collegues

Schedule

	024	2025				2026				2027				2028					
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
				Inter	rnal Milest	tones Inte	egration												
				Rev	iews														
 Final 	design	review of int	egration	tooling															
			- SF	R1 ready t	for integra	tion of It	Pixel -fro	om Comm	non and P	'ixel-									
				EC	LIK-Sites	readines	view for in	tegration	ation										
				EC	IT-Sites	eadiness	s review fo	or integrat	tion										
				- 20	TT OILCOT	oudinood		, integrat				Italy	Endcap						
										Rec	eption tes	t and test	infrastruc	ture of Ita	alv Endca	b half-rind	as		
		Rece	ption tes	st infrastru	ucture of I	taly End	cap half-ri	ngs Read	y and Co	mmission	ed				,		1		
		Too	, oling and	d Test infr	astruction	for Oute	r Endcap	Half-cylin	der integ	ration in It	aly								
		<u>—</u> То	ooling a	nd infrastr	ructure for	half-cyli	nder holdi	ng Italy R	Ready										
		<u> </u>	ool for C	uter Ende	cap servic	es handl	ing at PP	1 Italy Rea	ady										
		— То	ooling fo	r half-ring	integratio	on to half	f-cylinders	Italy Rea	ady										
		— То	ool for s	ervices in	stallation	Italy Rea	dy	2.62											
		<u> </u>	est infra	structure	for service	es of half	-cylinders	Italy Rea	dy and C	ommissio	ned								
				Test	infrastruc	ture for C	Outer End	caps in Ita	aly										
				Tes	st infrastru	cture for	Outer En	dcaps Ital	ly Ready	and Comr	nissioned								
				- Co	oling plan	t and ma	nifolding a	available I	Italy										
			-	😑 Ful	I test of In	frastruct	ure for Ou	ter Endca	aps ready	in Frasca	ti								
											IT Endo	cap Integr	ation						
											integra	tion							
							IT_L2_r	insertion (of half rin	gs and tes	sts								
							п.	L2_I inse	rtion of h	alf rings a	nd test								
							-	0.0	L3_r: inse	ertion of ha	ait rings ai	nd test							
									11_1	_3_1: inser	tion of ha	f rings an	dtest						
										1_L4_r: ir	sertion of	nall rings	and test	and test					
											1_L4_1: In	Sertion of	nair rings	talk and	toot oquir	monttrou	on orthou	and shire	mont
												Utaly E	n Enucap	italy and	iomont to	CERN	isport bo	k and ship	ment
													nucap rea	ady for sh	ipment to				
												SP1	Pivel eg	uinment	pady for i	netallation	from so	ond EC a	utsida eit
												JON	r ixel eq	apmenti	cauy ior i	Integratio	on of Oute	r System	Juriande all

ITk

ATLAS

•The ATLAS ITk Pixel Detector will be at the centre of the new ATLAS tracker for HL-LHC Run 4

- Individual components verified in prototype runs during last two years and most passed final design reviews
- Sensors, FE-chips, Outer Barrel local supports in production
- Module hybridization and assembly, most services in pre-production
- Remaining activities planning final design reviews in next few months:
 - Global Mechanics and Integration Final Design Review, critical for LNF activities, in Q1 2024
- Completion scheduled for 2027
- Intense next years at LNF for
 - Design finalization and start production of tooling and PP1
 - Readiness of large infrastructures
 - Multi-module scalable testing setup: DAQ, DCS, interlock
 - Assembly
 - Commissioning

Backup slides

EC Testing during Integration

0. Half-ring reception test

- insertion of services cooling lines, data/pwr cable-and halfring with silicon modules
- 2. Testing functionality cooling with CO₂
- 3. Thermo-clycles test with detector Off
- 4. Testing again functionality cooling with CO₂
- 5. Mating couple of half-shells to form a layer
- 6. Testing functionality of complete layer cooling with CO₂
- 7. Bring layer on platform
- 8. Repeat for the three layers
- 9. Final test on tasport box

ITk Material

- Reduce of material using
 - CO₂ cooling with thin titanium pipes
 - Thin Si and FE- chips
 - Advanced powering: serial powering for pixels
 - Carbon Fibre structures for mechanical stability and mounting
 - Optimise number of readout cables using data link sharing

Schedule

WBS 2.1.7: Pixel Integration – Schedule Overview

HS and tooling preparation - 1

HS and tooling preparation - 6

GM_I_Tomassini_27Nov2022 talk

Insertion of type-1 services

- Check electrical continuity of LV-, Tilock-, CANbus and VCAN-lines and data cables and env. bundles
- Where appropriate (e.g. the cooling manifolds), the resistance to the support structure will be measured and recorded to ensure compliance with the grounding and shielding including ground fault monitors, specifications

ITkPixelIntegration-ElectrialEquipment-v10_docx_cpdf.pdf

Insertion of cooling lines

