Perspectives and Reflections on this Workshop

29 March 2012

Bradley Sherrill

D.J.Morrissey

Professor, NSCL

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.

Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Thanks to the Organizers

- Not for asking me to give this talk, but rather:
- Special thanks to Angela and Nigel for organizing an excellent meeting in a great location
- Thanks to the Organizing Committee (Bracco, Cunsolo, De Angelis, Di Pietro, Gibelin, Gramegna, Lanza, Pierroutsakou, Pollarolo, Spitaleri, Viviani) and the Advisory Committee (Aoi, Aumann, Blumenfeld, Chulkov, Davids, Descouvement, Freeman, Keeley, Moro, djm, Oberteli, Rogachev, Vitturi) for putting together a fantastic program
- Thanks to the secretaries and assistants for their support and a smoothly running meeting

Conference Summary Talk – How to proceed?

Mention something from every talk?

Calculation: 25 min/(49 talks + 2 overview talks)

= ~ 30 seconds for material from each talk

N.B. the time for 6 talks already gone, sorry for that!

- Also I should mention:
 - Poster Session (Tuesday)
 - Informal Instrumentation Discussion Session (Tuesday)
 - Informal Reaction theory Discussion Session (Tuesday)
- Plan for this summary:
 - Perspectives on the program relation to DREB1
 - What did I hear?
 - · Statistics, Quotes

Comparison to Past: DREB "1"

24 July 1999 organized by Blumenfeld, Hanson, djm

(Friday afternoon through Sunday morning, 5 sessions)

- Introduction
 - » (Kemper)
- Elastic & Inelastic Scattering 1
 - » (Petrovich, Amos, Bauge, Alamanos, Suomijarvi)
- Knockout Reactions
 - » (Navin, Hansen, Tostevin, Sakharuk, Vitturi, Esbensen)
- Elastic & Inelastic Scattering 2
 - » (Rusek, Typel, Colo)
- Direct Rxn's of Astrophysical Interest
 - » (Tribble, Beaumel, Nunes, Kolata)
- Nucl. Structure through Transfer Rxn's
 - » (Rehm, Fortier, Sidortchouk, Janecke)
- Post-sessions (a) Detectors, (b) Coulomb Excitation
- 22 talks then, Overlap integral in "speaker-space" = 1/(22+51) = 0.014
- Overlap Integral in "session-space" ? 100% + many new topics

The Conference Framework

- Monday Session 1 Overview
 - Andrea Vitturi "Open Questions and Perspectives in DREB Physics" Theory
 - » Provided a hierarchy of 10 types of reactions depending on complexity » "need to have a consistent approach to reactions and structure"

 - » Reminded us of Schiffer's comments: "need a simple ways to treat data ... build on past knowledge and not get bogged down in complexity "
 - Wilton Catford "Open Questions and Perspectives in DREB Physics" Experiment
 - » Provided an overview of important icons and a glimpse of the future
 - » Noted that RIB's are so precious that we have been pushed to 4π coverage ... correlations in exclusive data now hindrance but should be exploited in future

<u>UNDERSTANDING = [Reaction theory] * [Nuclear Structure] * [Experimental Information]</u>

The Conference Framework

- Monday Session 1 Overview
 - Andrea Vitturi "Open Questions and Perspectives in DREB Physics" Theory
 - » Provided a hierarchy of 10 types of reactions depending on complexity
 - » "need to have a consistent approach to reactions and structure"
 - » Reminded us of Schiffer's comments: "need a simple ways to treat data ... build on past knowledge and not get bogged down in complexity "
 - Wilton Catford "Open Questions and Perspectives in DREB Physics" Experiment
 - » Provided an overview of important icons and a glimpse of the future
 - » Noted that RIB's are so precious that we have been pushed to 4π coverage ... correlations in exclusive data now hindrance but should be exploited in future

UNDERSTANDING = [Reaction theory] * [Nuclear Structure] * [Experimental Information]

Vitturi Scale of reactions: Catford scale of apparatus/analysis:

1-radiative capture 6-one-particle transfer I-Simple (inclusive)

2-"safe" coulex 7-two-nucleon knockout II-Manageable

3-elastic scattering 8-two-nucleon transfer III-Complex (fully exclusive)

4-inelastic scattering 9-sub-barrier fusion

5-pygmy resonances 10-multinucleon transfer

Monday at the Conference, a

- Session 2 Direct Reactions in "Theory"
 - Ab initio calculations of light-ion reactions Petr Navratil
 - » Goal: Predictive power showed results for S-factor ⁷Be+p (N_V=1 Viturri unit)
 and d+t fusion, going towards ³He+⁴He (N_V 9) ... <u>supercomputer work</u>
 - Interior and Exterior Contributions to Transfer Cross Sections *Ian Thompson*
 - » Ongoing controversy "surface vs. volume", "Post vs. Prior", "ANC vs. Spectroscopic Factors" focussed on (d,p) and (d,n) reactions $(N_V,6)$, new approach to calculate resonances
 - (microscopic calculation of) 3 He(α,γ) 7 Be reaction rate *Thomas Neff*
 - \hat{N}_{N} subbarrier fusion reaction (\hat{N}_{N} 9), excellent agreement with "very old" data and even suggested that mirror reaction data be checked
 - Overlap integrals, spectroscopic factors and asymptotic normalization coefficients for one-nucleon transfer reactions – Natalia Timofeyuk
 - » (N_V 6) and described "an attempt to go back to simplicity" and argued to drop the complicated wavefunctions in the interior

Monday at the Conference, b

- Session 3 Low Energy RNB Experiments
 - Elastic & inelastic proton scattering of 21 Na in inverse kinematics David Jenkins » Goal: Breakout from CNO cycles, 15 O(p, γ) (N $_V$ 1) very hard expt., 18 Ne(4 He,p) 21 Na (N $_V$ 10) via 21 Na+CH $_2$ in large array (N $_C$ III)
 - Indirect studies of astrophysical reaction rates a study of the ¹⁸Ne(α,p)²¹Na reaction using the TIGRESS and SHARC detector *Christian Diget* » *Closely related work*, e.g., ⁶Li(²⁰Na, ⁴He) ²²Mg* (N_V 10, N_C III) with gamma rays

 - Measurement of Gamow-Teller transitions from 56 Ni Masaki Sasano » B(GT) in 56 Ni using (d,n) reaction $(N_V$ 6, N_C II), turned up a poor nuclear structure calculation used in Nuclear Astrophysics

Monday at the Conference, c

- Session 4 Experiments to Determine Reaction Rates at Stellar Energies
 - First Measurement with Trojan Horse Mechanism using a Radioactive Ion Beam Marisa Gulino
 - » Goal: $^{18}F(p, \alpha)^{15}O$ (N_V 8) carried out via $^{18}F(d, n, \alpha)^{15}O$ (N_C II)
 - LUNA: Laboratory for Underground Nuclear Astrophysics Davide Trezzi » Goal: $^{17}O(p,\gamma)^{18}F$, N_V 0 $^{17}O(p,\alpha)^{14}N$, N_V 10 $^{2}H(\alpha,\gamma)^{6}Li$, N_V 8?, serious BKG reduction = N_C III
 - Low-energy d+d fusion reactions via the Trojan Horse Method Tumino Auroro » Goal: ${}^2H(d,p){}^3H$ and ${}^2H(d,n){}^3He$ N_V 6, particularly a "hole" in literature data, Carried out 3He + CD_2 = 3He +p (+n) , = 3H +p (+p) N_C II
- Tour of VIRGO
 - Goal: Prove Einstein wrong (that gravity waves cannot be detected) N_C off-scale?

Tuesday at the Conference, a

- Session 5 Two-nucleon Reactions
 - Fingerprints of core polarization in two-nucleon transfer reactions of halo nuclei Riccado Broglia
 - » "We should be able to calc. absolute cross sections, difficult but important." Requested that $^3H+^9Li=^{11}Li+p\ N_V\ 8$ be done to investigate 2n transfer strength
 - Multi-nucleon transfers using two-neutron halo ⁶He on ¹²C at 30 MeV using the SHARC and TIGRESS arrays at TRIUMF ISAC-II *Frederic Sarazin* » Can (⁶He, ⁴He) replace (t,p) ? N_V 8 ... ¹²C(⁶He, ⁴He) ¹⁴C N_C III
 - Nuclear response to two-neutron transfer via the ($^{18}O,^{16}O$) reaction *Diana Carbone* » ($^{18}O,^{16}O$) on a host of stable targets, $N_V \, 8 \, N_C \, I$.. Modern reference for calc's
 - Study of neutron rich nuclei via heavy-ion double charge exchange reaction *Hiroaki Matsubara*
 - » HeavylonDoubleChargeExchange, HIDCX: $^{12}C(^{18}O,^{18}Ne)^{12}Be\ N_VO\ N_CI$ limited applicability

Tuesday at the Conference, b

- Session 6 Techniques and Analyses
 - Electron Scattering: Hofstadter's experiment for short-lived nuclei *Toshimi Suda*
 - » SCRIT new facility to do (e,e') reactions N_V -1? reactions N_C IV!
 - » Need 10⁷ /s in trap for 50 ms for measurement, multiply or divide yield by 0.050?
 - » We look forward to first results at DREB-2o14!
 - Direct Reactions and Decay Spectroscopy using the MSU High Resolution Array Jenny Lee
 - » Series of reactions with HiRA device, decay spectroscopy 69Br, 8C decay
 - » $p(^{A}Ar,)d N_{V} 6$, $N_{C} III obtained C^{2}S in a uniform framework, sparked large discussion$
 - Reactions on light neutron rich nuclei with CHIMERA detector at LNS Giuseppe Cardella
 - » Very interesting idea, reuse a 4π detector for direct reactions, $^2H(^{10}Be, X)YN_V$?, N_C III
 - Experiments with a Double Solenoid System Rubens Lichtenthaler
 » RIBRAS (double solenoid) ⁶He Elastic Scattering N_V 3, among other things
 - Digital Signal Processing for Physics Applications *Matteo Angarano* » And now a word from our sponsor – new implementation of digital signal processing

Wednesday the Conference, a

- Session 7 Reactions Reaching Beyond the Neutron Drip Line
 - Structure of the unbound systems ¹⁰Li and ¹³Be *Giacomo Randisi*
 - » Invariant mass spectroscopy $^{12}C(^{14}B,^{13}Be)x \rightarrow ^{12}Be+n \ N_V \ 7 \ N_C \ III$
 - » Argument is Rxn mechanism is "simple" so they get at nuclear structure, expt. is complex
 - First observation of ground state di-neutron decay: ¹⁶Be *Artemis Spyrou*
 - » Invariant mass spectroscopy ${}^9Be({}^{17}B, {}^{16}Be)x \rightarrow ({}^{15}Be+n) \rightarrow {}^{14}Be+2n \ N_V \ 7 \ N_C \ III$
 - » Indication of g.s. properties of ¹⁵Be along the way
 - » Argument continues mechanism is "simple" so they get n-n correlation, expt. is complex
 - Evidence for the ground-state resonance of ²⁶O *Zachary Kohley*
 - » Invariant mass spectroscopy ${}^{9}\text{Be}({}^{27}\text{F}, {}^{26}\text{O})x \rightarrow ({}^{25}\text{O}+n) \rightarrow {}^{24}\text{O}+2n \ N_V \ 7 \ N_C \ III$
 - » Argument still continues mechanism is "simple" so get ²⁶O g.s., insight into n-efficiency
 - Multi-neutron detection, reaction mechanism and the quest for ⁷H *Haik Simon*
 - » Next generation Invariant mass spectroscopy, neuLand N_V ? N_C III+
 - » 30x2x50 bars 5x5x250 cm³

Wednesday the Conference, b

- Session 8 High Energy Reactions "The GSI Session"
 - Angular-momentum content of momentum profile in a neutron knockout from ¹⁴Be Leonid Chulkov
 - » Introduced a new observable in knock-out reactions, momentum profile, providing a signal for the L-component of the decay energy
 - Nuclear Breakup of ¹⁷Ne and its Two-Proton Halo Structure Felix Wamers
 - » "unsafe" coul-ex of 17 Ne by Pb, nuclear breakup by C to view 2-p halo, N_V 2? N_C III
 - » 40% s-wave in ¹⁹F ground state
 - Shell evolution in neutron-rich Al isotopes around N=20 Chiara Nociforo
 - » One-neutron knockout of $^{33-35}AI$, N_V 7, N_C II
 - » Complicated sums of s, p, d, & f states, odd-Z nuclei many levels
 - Exclusive measurements of (p,pX) neutron and proton knockout reactions on ⁵⁷Ni Alina Movsesyan
 - » Measurements of ⁵⁷Ni(p,p X) at high energies, detect all particles, N_V 7, N_C III

Wednesday at the Conference, c

- Session 9 Collective Response of Exotic Isotopes
 - Investigations of the excitation of the core and the halo of ¹¹Li *Rituparna Kanungo* » ¹¹Li(p,t)⁹Li, N_V 8 N_C III shows excitation of the ⁹Li core other follow up reactions like ⁹Li(d,d')⁹Li and ¹¹Li(p,p')¹¹Li (no soft dipole)
 - Unbound states of the drip-line nucleus ²⁴O from (p,p') scattering Simon Boissinot » ²⁴O(p,p')²⁴O also ²²O(p,p')²²O, N_V 3,4 N_C II
 - Measurement of the Giant Monopole and Quadrupole Resonances in ⁶⁸Ni using the Maya Active Target *Marine Vanebrouck* » ⁶⁸Ni(d,d')⁶⁸Ni also (α,α') , in a gas-filled active target detector, track analysis N_V 3,4 N_C III
 - Experimental results on the Coulomb excitation of exotic nuclei at the R3B-LAND setup – Dominic Rossi
 - » "unsafe" coul-ex of 68 Ni, 32,34 Ar, by Pb for pDR, N_V 2? N_C III, some hint, under analysis

Wednesday at the Conference, d

- Session 10 Knockout Reactions the details
 - Dynamical limits of nucleon knockout at intermediate energy *Freddy Flavigny* » p-knock out and n-knock out from ¹⁶C, ¹⁴O N_V 7, N_C II
 - » Gave differently shaped momentum spectra → momentum cutoff at low E/u
 - Correlations in direct two-proton knockout and details of the reaction mechanism Katerin Wimmer
 - $_{
 m *}$ $^9{\rm Be}(^{28}{\rm Mg},^{26}{\rm Ne})2p$ fully exclusive, N_V 7, N_C III including a general discussion of reaction theory and Dalitz plots
 - Eikonal reaction theory for one- and two-neutron removal reaction Kosho Minomo » "Fully microscopic framework for reaction analysis" ³¹Ne, ⁶He breakup in literature
 - Study of 16 C by neutron knockout Jongwon Hwang » 17 C(H, pn) 16 C* , n+ γ +fragments N $_V$ 7, N $_C$ III, evidence for a new state
- DREB 2012 Dinner, Toastmaster: Ian Thompson

Thursday at the Conference, a

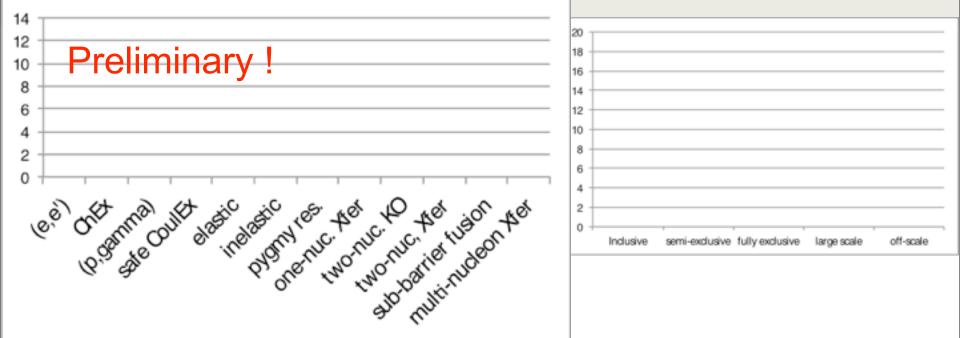
- Session 11 Transfer reactions to light, neutron-rich nuclei
 - Study of ¹⁰He by the ¹¹Li(d, ³He) transfer reaction *Adrien Matta*
 - » Calibration ⁹Li(d,³He)⁸He, ¹¹Li(d,³He)¹⁰He, N_V 6, MUST2 detector, N_C III
 - » $<^{8}He|^{9}Li> = 0.2$ in good agreement with previous work, $<^{10}He|^{11}Li>$ vs. BKG?
 - Studies of neutron rich Beryllium isotopes using transfer reactions *Jacob Johansen*
 - » Set of reactions ¹¹Be(d,p), (d,t), (d,d') with T-Rex (silicon) & Miniball (Ge) N_V 6, N_C III
 - » Need γ 's / use γ 's to separate the states, some question about role of breakup
 - Neutron sd-shell excitations for light nuclei with N ≥ 8 *Alan Wuosmaa*
 - $^{12}B(d,p)^{13}B$, $^{15}C(d,p)^{16}C$, $^{13}B(d,p)^{14}B$ in HELIOS spectrometer, N_V 6, N_C III
 - » Generally show that these are "good" shell model nuclei, halo-state 1- in 14B
 - Transfer reactions into the Island of Inversion Vinzenz Bildstein
 - » $^{30}Mg(d,p)^{31}Mg$) with T-Rex (silicon) & Miniball (Ge) N_V 6, N_C III
 - » Noted: forward detectors are "useful" due to kinematics, use g's to sort out states

Thursday at the Conference, b

- Session 12 Study of the evolution of nuclear structure continues
 - Proton-neutron interactions around N=40 studied at ISOLDE *Dennis Muecher*
 - » $^{72}Zn(t,p)$, (t,d), CoulEx on Ti(support), 3-in-1expt. T-rex & MiniBall, N_V 2,6,8, N_C III
 - » Looking for evidence for mixed symmetry states
 - Evolution of the shell structure in medium mass nuclei: search for the neutron 2d_{5/2} orbital in ⁶⁹Ni *Mohamad Moukaddam*
 - » 68 Ni(d,p) 69 Ni with MUST2, ExoGam , N_V 6, N_C III
 - » Observed the g.s. and 2 excited states, two entrance, two exit channel formulations
 - Test of the asymmetry of reduction factors with one nucleon transfer reaction on ¹⁴O
 - Alain Gillibert
 - » $^{14}O(d,^{3}He)^{13}N$, $^{14}O(d,^{3}He)^{13}N$, MUST2, VAMOS, N_{V} 6, N_{C} III
 - » Very carful analysis to extract C^2S , appears to be "flat" with ΔS ...
 - Asymptotic normalization coefficients of mirror states in ²¹Al Beatriz Fernandez-Dominguez
 - » Analysis of ${}^{20}O(d,p){}^{21}O$ in ANC framework to predict mirror states in ${}^{21}AI$ narrow states!

Thursday at the Conference, c

- Session 13 Transitions to the continuum and fusion
 - Analysis of breakup channel for the ¹¹Li+²⁰⁸Pb reaction at energies around the Coulomb barrier *Juan Pablo Fernandez-Garcia*
 - » $^{208}Pb(^{11}Li,^{11}Li)$ and breakup, N_V 2,10, N_C III
 - » Probability for breakup approaches 40% as function of (lab) angle
 - Structure and reactions of three-body exotic nuclei using discretization methods Manuela Rodriguez-Gallardo
 - » 4-body CDCC calc. e.g., $^{208}Pb(^{6}He, ^{6}He)$, $^{208}Pb(^{11}Li, ^{11}Li)$ at low E, N_V 2,10
 - Exploring the coupling to nucleon transfer in fusion involving neutron-rich Sn nuclei at energies near the Coulomb barrier *Felix Liang*
 - » 132,124 Sn + 40,48 Ca, 132,124 Sn + 58,64 Ni, N_V 9, N_C II looking for fusion enhancement Highest 40 Ca with positive Q-values for n transfer but more than 58 Ni with similar Q's
 - Scattering of ⁸He on ²⁰⁸Pb at energies around the Coulomb barrier *Gloria Marquinez-Duran*
 - » $^{208}Pb(^{8}He, ^{8}He)$, and breakup N_{V} 3, Si system N_{C} III, comparison of σ -el/ σ -R for heliums



Thursday at the Conference, d

- Session 14
 - Coulomb Excitation of ⁸Li on a ¹⁹⁷Au Target *Marlete Assuncao* » ¹⁹⁷Au(⁸Li, ⁸Li), N_V 2, RIBRAS facility at 26 MeV N_C III
 - Fusion reactions and neutron transfer in collisions induced by Li isotopes on Sn targets Maria Fisichella
 » A Li + ASn, N_V 9, N_C II looking for fusion enhancement
 - Summary Talk, djm

Statistics of the Workshop

- Excellent and diverse program demonstrates DREBs are making important contributions to nuclear science with challenging problems
- Many open Issues and many promising experiments
- The field is becoming mature with sophisticated experiments and reaction models making significant nuclear structure studies possible.

Quotes from DREB 2012 (Pub Quiz)

- 1. "I don't have conclusions, I have questions."
- 2. "People somewhat ignore nuclear structure information in astrophysical calculations."
- 3. Who said their work was relevant to nuclear fusion power?
- 4. Who reminded experimenters to "measure neutrons"?
- 5. Who said that they got a \$19M gift?
- 6. Who said they were going to give a rock star talk, i.e., no results?
- 7. Who said their results were low statistics but high exclusivity?
- 8. Who said "Since I have the microphone, ..."?

Quotes from DREB 2012 (Pub Quiz)

- 1. "I don't have conclusions, I have questions."
- 2. "People somewhat ignore nuclear structure information in astrophysical calculations."
- 3. Who said their work was relevant to nuclear fusion power?
- 4. Who reminded experimenters to "measure neutrons"?
- 5. Who said that they got a \$19M gift?
- 6. Who said they were going to give a rock star talk, i.e., no results?
- 7. Who said their results were low statistics but high exclusivity?
- 8. Who said "Since I have the microphone, ..."?

Have a great trip home. Then get to work.

Quotes from DREB 2012 (Pub Quiz)

- 1. "I don't have conclusions, I have questions."
- 2. "People somewhat ignore nuclear structure information in astrophysical calculations."
- 3. Who said their work was relevant to nuclear fusion power?
- 4. Who reminded experimenters to "measure neutrons"?
- 5. Who said that they got a \$19M gift?
- 6. Who said they were going to give a rock star talk, i.e., no results?
- 7. Who said their results were low statistics but high exclusivity?
- 8. Who said "Since I have the microphone, ..."?
- Broglia, Jenkins, Tumino, Thompson, Suda, Roeder, Boissinot, Orr

Have a great trip home. Then get to work.

