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Outline:

1. Brief remainder of the “standard” CDCC method.

2. Testing the standard CDCC method against the Faddeev method.

3. Beyond the single-particle model: inclusion of core excitation.

4. Extension to three-body projectiles (4-body CDCC)



Remainder of the “standard” CDCC method ( ∼80s)
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Example: 11Be+p → (10Be + n) + p

● Effective 3-body Hamiltonian with the 3 bodies in
their g.s.

● Three-body wf expanded in projectile (11Be) inter-
nal states

● Breakup treated as single-particle excitations to
n+10Be continuum

● Continuum is discretized in energy bins and trun-
cated in energy and angular momentum

● Provides elastic and elastic breakup, but NOT
transfer.

p+   Be11

p+ (n +  Be)        10



Restrictions and open issues of the standard CDCC
method
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Formal:

● Originally formulated for 3-body problems (2-body projectiles).

● Ignores possible excitations of the projectile constituents and target.

● Simple pair interactions (eg. central fragment-target interactions).

● Ignores transfer channels

● Relation with Faddeev formalism?

Computional:

● Numerically demanding
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Benchmark calculations CDCC versus Faddeev



CDCC versus Faddeev
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● The exact solution of a three-body scattering problem is formally given by
the Faddeev equations.

Ψ = Ψ1 +Ψ2 +Ψ3
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● The CDCC method can be derived as an approximated solution of the
Faddeev equations in a truncated model space (Austern,Yahiro,Kawai,
PRL63 (1989) 2649)

● For light systems, Faddeev equations can now be solved, so a comparison
with CDCC is possible.



CDCC vs Faddeev: elastic scattering
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12C(d,d)12C at 56 MeV
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A. Deltuva, A.M.M., E. Cravo, F.M.Nunes, A.C. Fonseca, PRC76, 064602 (2007)

☞ CDCC and Faddeev fully consistent!



CDCC vs Faddeev
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However...
10Be (d, pn) 10Be
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☞ Differences have been recently reported for breakup (low energies) and transfer (high
energies) in 10Be+d reaction (N.J. Upadhyay, A. Deltuva, F.M. Nunes, arXiv:1112.5338)
☞ Further investigation is required!
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Beyond the standard CDCC method



Beyond the standard CDCC method
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● Explicit inclusion of target excitation

☞ Yahiro et al, Prog. Theor. Phys. Suppl. 89 (1986)32

● Explicit inclusion of core excitation

☞ Summers et al, PRC74 (2006) 014606, PRC76 (2007) 014611

● Extension to three-body projectiles (6He).

☞ Matsumoto et al, NPA738 (2004) 471, PRC70 (2004) 061601(R).

☞ Rodrı́guez-Gallardo et al, PRC72 (2005) 024007, PRC77 (2008) 064609.
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Part II: The effect of core excitation in the scattering of weakly bound nuclei



Why is important studying core excitation?
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● Many nuclei of current interest (eg. exotic nuclei) are best studied within
few-body models.

● The few-body constituents are frequently deformed clusters (eg. Be, C
isotopes)

● Inclusion of the core degrees of freedom can be essential to:

✦ understand the dynamics,

✦ extract reliable structure information



Valence vs core excitation mechanisms in few-body reaction models
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11Be+208Pb

10Be11Be

n

Pb

☞ Valence excitation mechanism.

11Be

10Be*

n
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☞ Core-excitation mechanism



Effect of core excitation in scattering observables

March 27 2012 14 / 26

● Elastic scattering (adiabatic recoil model): K. Horii et al, PRC81 (2010) 061602

☞ Some effects found in 8B +12 C.

● Transfer (DWBA, CCBA): Winfield et al, NPA 683 (2001) 48, Fortier et al, PLB
461 (1999) 22

☞ Very important to explain the production of 10Be(2+) in 11Be(p,d)10Be

● Breakup (XCDCC) Summers et al, PRC74 (2006) 014606, PRC76 (2007) 014611

☞ Very small effects in the cases studied (11Be, 17C)



Core excitation in nuclear breakup
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Extended CDCC (XCDCC) calculations with core excitation:

0 20 40
θc.m. (deg)

0

10

20

30

40

dσ
/d

Ω
 (

m
b/

sr
)

expt
CDCC
XCDCC

p(
11

Be,
10

Be+n)p @ 63.7 MeV/nucleon

0.5-3.0 MeV

0 20 40
θc.m. (deg)

0

5

10

15

20

25

30

dσ
/d

Ω
 (

m
b/

sr
) expt

XCDCC
10Be(0+)
10Be(2+)

p(11Be,10Be+n)p @ 63.7 MeV/nucleon

3.0−5.5 MeV

(Summers and Nunes, PRC76, 014611 (2007))

☞ Very small core-excitation effect but...these calculations are currently under revision.



Core excitation in a DWBA model
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● Three-body model: two-body projectile (core+valence) + target

ξ
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● DWBA amplitude with core excitation:

T
JM,J′M ′

if = 〈χ
(−)
f (~R)Ψf

J′M ′(~r, ~ξ)|Vvt(~Rvt)+Vct(~Rct, ~ξ)|χ
(+)
i (~R)Ψi

JM (~r, ~ξ)〉

☞ Vct(~Rct, ~ξ) responsible for dynamic core excitation.

☞ ΨJM (~r, ~ξ) =
∑

ℓ,j,I R
J
ℓ,j,I(r)

[

[Yℓ(r̂)⊗ χs]j ⊗ ΦI(~ξ)
]

JM



Application to 11Be+p → 10Be +n +p
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☞ Core-excitation mechanism essential to explain observed cross sections!
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Part III: Extension to three-body projectiles (4-body CDCC)



Extension to three-body projectiles
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● Kyushu group ⇒ Pseudo-state basis (Complex Gaussians) in Jacobi
coordinates.

● Sevilla group ⇒ HH expansion using Pseudo-states (Transformed
Harmonic Oscillator) or bins.

● Brussels group
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Extension to three-body projectiles
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● Kyushu group ⇒ Pseudo-state basis (Complex Gaussians) in Jacobi
coordinates.

● Sevilla group ⇒ HH expansion using Pseudo-states (Transformed
Harmonic Oscillator) or bins.

● Brussels group
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Extension of three-body projectiles
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... but there are still many challenges. Eg:

● Extension to other 3-body projectiles other than 6He (11Li, 14Be, etc)

☞ See talk by M. Rodrı́guez-Gallardo.

● Computation and convergence of breakup observables

● Extension to A > 4 projectiles?

● Use of microscopic models instead of few-body models?
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EXTRA SLIDES...



CDCC vs Faddeev: exclusive breakup
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Proton angular distribution for fixed θn.
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CDCC vs Faddeev: exclusive breakup
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Proton energy distribution for fixed θn and θp
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Core excitation in elastic scattering
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Core excitation in 8B+12C elastic scattering:

*
(quoted from K. Horii et al, PRC81 (2010) 061602)



CDCC vs Faddeev: transfer
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☞ The CDCC does NOT provide the transfer cross section, but can be used to
approximate the 3-body WF in the exact transfer amplitude:

Eg: A(d, p)B ⇒ T ≈ 〈χ
(−)
pB φnA |Vpn + UpA − UpB |ΨCDCC 〉
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☞ Good agreement at low energies
☞ Differences found at higher energies

N.J. Upadhyay, A. Deltuva and F.M. Nunes,
arXiv:1112.5338



Core excitation in Coulomb breakup: B(E1)
response of 11Be
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Core excitation in Coulomb breakup: B(E1)
response of 11Be
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B(E1) extracted in a model-dependent way ⇒ compare directly cross sections
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Q: How good is the approximation σbu = Sσsp?



Application to 19C+p → 18C +n +p
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☞ The core-excitation mechanism gives the dominant contribution to the cross
section.

☞ This mechanism improves the description of the shape with respect to the
single-particle calculation.


	
	
	CDCC vs Faddeev
	CDCC vs Faddeev
	
	Valence vs core excitation mechanisms in few-body reaction models
	

