Study of the neutron rich nuclei via heavy-ion double charge exchange reaction #### Hiroaki MATSUBARA CNS, University of Tokyo Riken matubara@cns.s.u-tokyo.ac.jp M. Takaki, T. Uesaka, S. Shimoura, S. Ota, Y. Sasamoto, H. Tokieda, S. Kawase, Y. Kikuchi, Y. Kubota C.S. Lee, S. Michimasa, H. Miya, K. Kisamori, R. Yokoyama, S. Fujii, T. Ryan, K. Yako, S. Noji, M. Dozono, J. Zenihiro, J. Lee, A. Tamii, T. Suzuki, Takahisa, K. Miki, N. Aoi, T. Hashimoto, T. Kawabata, N. Yokota, S. Sakaguchi, Y. Maeda, H. Miyasako ## Conventional approach Physics around the neutron drip line - new magic number - neutron halo - neutron skin etc. Conventional approach is Unstable nucleus beam with projectile fragmentation reaction - γ -ray spectroscopy - invariant-mass measurement - inverse kinematical reaction etc. We have to select appropriate measurement technique depending on a situation. ### Neutron rich nuclei ¹²Be and ⁹He ### ¹²Be - spin-parities at low-lying states are well known - but those at high-lying states are unknown ### ⁹He - -the largest A/Z ratio (4.5) - -unbound nucleus - spin-parities are not fixed ### New approach to ⁹He or ¹²Be How can we approach ⁹He and ¹²Be? Double β + type transition - from stable target - beyond the drip line Double charge exchange reaction with heavy ion ### What's HIDCX? #### Heavy-ion double charge exchange reaction (HIDCX) - A new tool to study light neutron rich nuclei - Missing mass spectroscopy by using a magnetic spectrometer - One-shot measurement below and beyond the particle threshold - No limitation in terms of the drip line - We are proposing the (¹⁸O, ¹⁸Ne) reaction at medium energy - Normal kinematical reaction # Why HIDCX at medium energy? #### Previous DCX works: - Pion DCX reaction, $(\pi -, \pi +)$ by K.K. Seth - Heavy ion DCX reaction at low energy (~20 MeV/u) by H.G. Bohlen - No information about angular distribution Multi-step reaction #### Proposing HIDCX at medium energy: - Primary beam experiment (18O is stable) - High intensity - At medium energy (80 MeV/u) - Simpler reaction mechanism is expected - Additional information of angular distribution - ΔL assignment # Why (18O,18Ne) reaction as HIDCX? #### Transition in super multiplet members - 1. Large overlapping of wavefunction in r-space - → large reaction rate # Why (18O,18Ne) reaction as HIDCX? #### Transition in super multiplet members - Large overlapping of wavefunction in r-space → large reaction rate - 2. Negligible contribution of excited states in ¹⁸Ne ### Research Center for Nuclear Physics, # Successful particle identification PI for ¹⁸Ne was realized mainly by A/Q information. $$B\rho = \frac{p}{Q} = \frac{Am_N\beta\gamma}{Q} \Longrightarrow \frac{A}{Q} = \frac{B\rho}{\beta\gamma m_N}$$ A/Q value of 9/5 is unique for 18 Ne. (⁹B nucleus is unbound.) Good particle identification for ¹⁸Ne was realized. ### Clear peaks in energy spectra of ¹²Be ### Can we learn more? Suggesting the same spin-parity for g.s. and 2.5MeV different on for 4.5 MeV from the others ### DCX calculation - Coupled-channel calculation (ECIS 97) - Assuming two-phonon modes - Transition potential by double-folding - 1. Multi-polarity can be assigned. - 2. It does not depend on an intermediate state. # Energy spectrum of ⁹He Why no peaks? ## Why no peaks in ⁹He? For expample, C.Scholl et al. PRC (2011) Even simple calculation can reproduce a magnitude of DCX cross section. 0+; 0.00 12C -> 12Be(g.s.) : B(GT)^2=0.34 12Be 1+; 0.00 0+; 0.00 B(GT)=0.34 0+; 0.00 12C SFO interaction 1/2, 0.00 9Be -> 9He(g.s.) : B(GT)^2=0.004 9He B(GT)=0.21 $$3/2$$ -, 0.00 $3/2$ - 0.00 $3/2$ - 0.00 9Be ## Summary - Proposing HIDCX reaction at medium energy was tested. - Angular distribution of c.s allows us to determine multi polarity. - 4.56 MeV in ¹²Be has been assigned as 2⁺ state. - No peaks were observed in ⁹He owing to small B(GT) value, which is consistent with the simple calculation. - We established a first step for the HIDCX to be a new tool for light neutron rich nuclei. Thank you for your attention ## Future plan for HIDCX - Improvement of Experiment - Beam intensity (10 times larger) - Energy resolution (1MeV →0.3 MeV) - Target nuclei - ¹⁰Li (unbound but expected as ~20 nb/sr)