Describing core excitation in the scattering of halo nuclei
using a Transformed Harmonic Oscillator (THO) basis
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ABSTRACT 3 Including Core Excitations 5 Application to 'Be+?"®*Pb reaction

The C(?ntinuum of a two-body e with core excitations is stud- In order to include core excitations, we should consider a new We have applied the THO method for the discretization of the con-
ied using a recently developed basis of square-integrable states. The Hamiltonian like: tinuum of ' Be to describe the '!'Be scattering by a ’*Pb target at 69
?13515 has be.en apth%g to describe the projectile contmuum.m j‘he v MeV /nucleon within the Equivalent Photon Method [5]. Only di-

Be scl%ttermg b.Y a “"Pb g 6 69 MeV/ .nucleon. The excitation = T ° S e rect dipole and quadrupole Coulomb break-up is considered in this
Of. the "“Be core 15 found. to be important tq IMprove the agreement 6// H ="Ty(r) + heore(§) + Ve (T, ), (3) model. We compare with the experimental data from RIKEN [6]. In
with the available experimental data for this reaction. N the pictures below we can see the energy and angular distribution

— of the break-up:
. with general solution: 2.0 . | . | . . .
] 11 208
1 Introduction i A ) Be+~Pb @ 69 MeViu
v = 2 Raln) Pom() @ 61(6)] @ -

During the last few years, the study of reactions involving loosely 151 i
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bound exotic nuclei has been one of the most active fields in Nu- MR EN eeter O < @<

clear Physics. These reactions are known to be strongly influenced — Mixture of different
by the coupling to the unbound states. Beryllium and Carbon iso-
topes belong to a heavy deformed region. This fact affects to their
continuum structure and, therefore, to reactions with these nuclei.
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= Core excitations driven by V_, (7, 5)
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cg Cm cn ca|lcislaelcizlCel col oo @2 The interaction between core and valence is obtained within a
512 3 | zalBis 57 15G particle-rotor model (deformed core) although the formalism is sim-
BE; . g et o2 Bog * | ilar. for. vibrating cores or any microscopic description of the core 0.0
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4 Application to 'Be Structure - -
10°E e RIKENdata E_=05MeV|
o) -- E1 1
Here it is described the halo nuclei ''Be as “Be+n including ex- .t 1
. citations within the ground and first excited states of the core g 105 |
. . £ th . (!Be 01 and 2% states). We use the interaction V,. from [4] to E F ]
2 Discrete representation of the Continuum reproduce ''Be continuum structure. This potential considers a S T —
S _ quadrupole deformation parameter 32 = 0.67 for 1YBe. By looking E 10'F " E
2.1 2-body projectile in a Pseudo-States (PS) basis at ''Be bound state and 5/2 resonance in this model we find: F ¢ ]
In a pure single particle model, the projectile Hamiltonian is: 04 103k f f |
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0.2 + — Solving Differential Equation N 06
2 xd,,> — - THOx N=15 c.m.

The wave functions describing the internal motion of the projectile
are obtained as the eigenstates of the projectile Hamiltonian in a
truncated basis of square-integrable functions.

= Excitation of the core is important to under-
stand the data in the region of the 5/2™ reso-
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By diagonalizing the Hamiltonian we obtain a set of eigenfunctions: nance
-0.2
i) = =N Crlgie(r)).
The energy of these states would be: Y . | . | . | . | . i |
0 5 10 - () 15 20 25 6 Summary and conclusions
(6<0 = Boumd St We have shown how the PS method with THO functions provides a
€ = , . suitable discrete description of the continuum of a two-body system
\ea=>l = Sttafiey mepresEing e Comibhts including possible excitations of the core.
one eigenstate for each bound state and the rest, up to N, conform - . 0" xd,,> “Be (5/2+ resonance) .
a discrete representation of the continuum. 1 x> [— SivimDifiaatd S - 1| The THO method pl‘OVldeS a
ozl % .-+ THOX N=10 ) natural treatment of resonances.
2.2 The THO basis = N
o | = 2| The importance of the core excited states in the
In principle any complete basis would be able to reproduce the con- 4

tinuum. However, a suitable selection of the set of functions will 0 S———— - Halo nuclei "~ Be calls for the apphcatlon of this

reduce this number simplifying scattering calculations. In this case | S~ ' x >"‘ _ method to other deformed core systems like
we investigate a PS method based on the application of a Local Scale \ / o 19C.
Transformation (LST) to the Harmonic Oscillator (HO) basis, giving 0.2/ 2" xd,,> |
rise to the SO'Called Tl‘al’leOI‘med Harmonic OSCiHatOl‘ (THO) baSiS. | | | 3 Generalization Of more Complex reaction
Specifically, for the LST we adopted the parametric form of Ref. [1]: 0 | 10 | 20 | 30 | 20 : : :
r (fm) mechanisms such as CDCC to include this
. . 1w halo nuclei structure is in progress
S (T> — ™ m . (2) . . . .
V2b (%) 4 ( 3/?) B d Stat dR In conclusion, the THO method is an accurate option to describe
. . ] ! S ~ L0 d e.s and KResonances ap p?ar the structure of loosely bound nuclei with deformed core [7]. The
This transformation change the asymptotic behaviour from Gaus- naturally with a reduced THO basis reduction of the number of functions needed to reproduce the struc-
sian to exponential decay: ture of the projectile will be crucial in more complex reaction mech-
. _ $2 Looking at the quadrupole electric transition probability B(E2): anisms.
HO basis =  ¢|s] —> e ¥
. i _ﬁ S0 ! [ ' l | T
THO basis — ¢S(T)] — e 27 I 5/2" Resonance B(E2) i (
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