

Halo structure by the ratio method

P. Capel¹, R. C. Johnson², and F. M. Nunes³

¹Physique Nucléaire et Physique Quantique, Université Libre de Bruxelles, Belgium ²Centre for Nuclear and Radiation Physics, University of Surrey, U.K.

³National Superconducting Cyclotron Laboratory, Michigan State University, USA pierre.capel@ulb.ac.be, r.johnson@surrey.ac.uk, nunes@nscl.msu.edu

Halo nuclei

- Very neutron-rich nuclei that exhibit a large matter radius and a low separation energy of one or two neutrons.
- Seen as a *core* surrounded by one or two loosely-bound neutrons which form a sort of halo.

Examples: ¹¹Be, ¹⁵C (one-neutron halo), ⁶He, ¹¹Li (two-neutron halo)

- Studied through reactions (e. g. elastic scattering, breakup,...)
- \Rightarrow need an accurate theoretical description of those reactions and/or observable insensitive to reaction process.

Angular distributions

Angular distributions for elastic scattering and breakup are very similar [1].

⇒ projectile scattered similarly whether bound or broken up This can be explained within the

Recoil Excitation and Breakup model [2], which

- assumes an adiabatic treatment of the projectile excitation
- ullet neglects the interaction $V_{{
 m n}T}$

between the halo neutron and the target

⇒ excitation and breakup of the projectile due to the recoil of the core.

REB predicts for elastic scattering

$$\frac{d\sigma_{\rm el}}{d\Omega} = |F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm pt} \tag{1}$$

with $F_{00} = \int |\Phi_0|^2 e^{i \mathbf{Q} \cdot \mathbf{r}} d\mathbf{r}$ where $oldsymbol{Q} \propto (oldsymbol{K} - oldsymbol{K'})$ \Rightarrow scattering of a composite nucleus \equiv

form factor × scattering of a pointlike nucleus

Similarly for breakup:

$$\frac{d\sigma_{\text{bu}}}{dEd\Omega} = |F_{E,0}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\text{pt}} \tag{2}$$

 $\frac{d\sigma_{\text{bu}}}{dEd\Omega} = |F_{E,0}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\text{pt}}$ with $|F_{E,0}|^2 = \sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i\mathbf{Q} \cdot \mathbf{r}} d\mathbf{r} \right|^2$

This explains the similarities in angular distributions and provides the ratio idea.

Ratio Idea

Following (1) and (2),

$$\frac{d\sigma_{\text{bu}}/dEd\Omega}{d\sigma_{\text{el}}/d\Omega} = \frac{|F_{E,0}(\mathbf{Q})|^2}{|F_{00}(\mathbf{Q})|^2}$$
(3)

- independent of reaction process
- probes only nuclear structure
- no need of normalising experimental cross sections

Test within the Dynamical Eikonal Approximation [3], which includes the projectile dynamics and V_{nT} . We use $d\sigma_{\rm bu}/d\sigma_{\rm sum} = |F_{E,0}|^2$

with
$$\frac{d\sigma_{\text{sum}}}{d\Omega} = \frac{d\sigma_{\text{el}}}{d\Omega} + \frac{d\sigma_{\text{inel}}}{d\Omega} + \int \frac{d\sigma_{\text{bu}}}{dEd\Omega} dE$$
.

¹¹Be + Pb @ 69AMeV

Angular distributions for breakup and all processes are compared to their ratio and its prediction $|F_{E,0}|^2$ [4].

- Ratio removes most angular dependence
- DEA ratio in excellent agreement with REB $|F_{E,0}|^2$

No dependence on target

Similar ratios for Coulomb and nuclear dominated collisions \Rightarrow independent of the reaction process

Sensitivity to projectile structure

Ratio sensitive to projectile binding energy in both shape and magnitude

Ratio is also sensitive to details of the radial wave function [4].

 $Ed\Omega)/($ $0p_{1/2}$ --- $0d_{5/2}$ ····· θ (deg) Ratio sensitive to partial-wave configuration

in both shape and magnitude

Conclusion & Outlook

Physique Quantique

- Ratio of angular distributions provides a reaction-independent observable to study halo nuclei.
- Sensitive to binding energy, partial-wave configuration and radial wave function.
- Can it be extended to two-neutron haloes and/or proton haloes?
- Can we obtain information about spectroscopic factor?

References

[1] P. Capel, M.S. Hussein, and D. Baye, Phys. Lett. **B693**, 448 (2010)

[2] R.C. Johnson, J.S. Al-Khalili, and J.A. Tostevin, Phys. Rev. Lett. 79, 2771 (1997)

[3] D. Baye, P. Capel, and G. Goldstein Phys. Rev. Lett. **95**, 082502 (2005)

[4] P. Capel, R.C. Johnson, and F.M. Nunes, Phys. Lett. **B705**, 112 (2011)

