FIRST MEASUREMENT WITH TROJAN HORSE METHOD USING RADIOACTIVE ION BEAM

¹⁸F+p \rightarrow ¹⁵O + α @ CRIB

MARISA GULINO INFN,LNS, CATANIA, ITALY UNIVERSITÀ DI ENNA "KORE", ENNA, ITALY

DREB 2012 - Direct Reactions with Exotic Beams Pisa, 26-29 March 2012

□ Astrophysical motivations & State of Art

□ Indirect measurement by Trojan Horse Method

 \Box Experimental set-up \rightarrow new apparatus for RIB application

Data Analysis and preliminary results

Astrophysical motivations

Epcm (MeV)

State of Art

Most recent references:

D. J. Mountford et al PHYSICAL REVIEW C 85, 022801(R) (2012) "Resonances in 19Ne with relevance to the astrophysically important 18F(p,α)15O reaction."

A. S. Adekola et al. PHYSICAL REVIEW C 83, 052801(R) (2011) "First proton-transfer study of 18F + *p resonances relevant for novae*"

C. E. Beer et al. PHYSICAL REVIEW C 83, 042801(R) (2011) "Direct measurement of the 18F(*p*,*α*)15O reaction at nova temperatures"

New measurement @ CRIB by using the Trojan Horse Method

TURNING THE IDEA INTO PRACTICE

Assuming the QF mechanism is dominant the process can be represented in Feynman diagrams

"Plus" of the TH methods

- 1) Typical QF process cross sections (mbarn/sr) though measuring astrophysical ones
- 2) The TH cross sections is the purely NUCLEAR one: no Coulomb barrier effects
- 3) No electron screening effects: an INDEPENDENT piece of information can be obtained on the electron screening potential Ue by comparison to direct data
- 4) Can be extended to use QFR for studying NEUTRON induced reactions (VNM Virtual Neutron Method)

"Minus" of the TH methods

- 1) Competition between QF and other reaction mechanisms: identification of the convenient kinematical conditions may need more than one experiment run
- 2) Some dependence on theoretical models
- 3) Need of direct data at higher energies for normalization

S. C. et al., ApJ 457 (1996) 855 7

BEAM PRODUCTION

¹⁸F beam development

Year	BTU type	Prod.Target type	Peak intensity
2006	Beam dev	Room temp.	~10 ⁵
2007	Thick target experiment	Liquid N cooled	5x10 ⁵
2008	Trojan Horse experiment	Liquid N cooled	> 10 ⁶
Primary beam: ¹⁸ O ⁸⁺ , 4.5-5 MeVA BEAM PURITY > 98%			
Production target: H. E _{beam} = 48.7 MeV			
Production reaction: ¹⁸ O(p,n) ¹⁸ F $\sigma = 0.8$ MeV			
DREB 2012 - Direct Reactions with Exotic Beams			

EXPERIMENTAL SETUP

(other than CRIB.....)

BEAM

Array of Silicons for TRojan HOrse

EXPERIMENTAL SETUP

In order to allow for the optimization of the two experiments ASTRHO and the DSSSD were hosted in a mechanical system that allowed for easy movement of the detector holder plates

EXPERIMENTAL SETUP

How ASTRHO looks like in reality (before PPAC explosion...)

Q-VALUE SPECTRUM

HINTS FOR QF MECHANISM

Conclusions and Perspective

- □ THM was successfully applied to radioactive ion beam induced reaction
- □ the beam is tracked event by event and the kinematical variables were consequently rencostructed
- □ the preliminary results showed the possibility to study the cross section of the 18F(p,a)150 reaction and extract complementary information on S(E) factor \rightarrow (work in progress)
- □ Increase statistic and confirm the results with a second experimental run
- Possibility to measure the 18F(n,a)15N reaction

BARE NUCLEUS CROSS SECTION

THE ASTROPHYSICAL JOURNAL, 708:796-811, 2010 January 1

M. Gulino, G. G. Rapisarda, L. Lamia, M. L. Sergi, C. Spitaleri

A. Coc, F. Hammache, N. de Sereville

S. Kubono, H. Yamaguchi, S. Hayakawa, Y. Wakabayashi

T. Komatsubara, N. Iwata, T. Teranishini

BEAM position on PPAC and MCP

CUTS

