Structure of the unbound systems ¹⁰Li and ¹³Be

Giacomo Randisi

IKS Leuven & LPC Caen

for the LPC-CHARISSA-DEMON Collaboration

DREB 2012 Pisa, March 26th-29th

The unbound systems		
•		

Beyond the neutron drip-line: the unbound systems

	Motivations			
0	•0	000	000000	00

Motivations: modeling 3-body systems

Borromean nuclei:

3-body systems in which no binary subsystem is bound

core-*n*, *n*-*n* interactions : ingredients of 3-body models

(e.g. I.J. Thompson et al. PRC 49 (1994) 1904)

 \Rightarrow study of the unbound subsystem to get information about core-*n* interaction

 $n + \text{core as target} \Rightarrow \text{impossible}$ \Rightarrow study of Final State Interaction e.g. ¹⁴Be

 $^{12}\text{Be-n}$ interaction \Rightarrow ^{13}Be spectroscopy

Motivations: Shell structure beyond the neutron drip-line

o oo oo oo			Experimental approach		
	0	00	000	0000000	00

Experimental approach: knockout and fragmentation

proton knockout

```
e.g. C({}^{14}B, {}^{12}Be+n)X
```


¹⁴**B** (ν): s + d

¹³Be (ν): if $\Delta \ell_n = 0$ (sudden approx.) \Rightarrow *s* and *d* are favored

	Experimental approach	
	000	

Experimental approach: the invariant mass method

- low intensity beams ($\sim 10^4$ pps) can be used
- ▶ relatively high cross sections (~ mb)
- thick target (increasing yields)
- forward focused products

	Experimental approach	
	000	

Experimental approach: the invariant mass method

coincidence detection of charged fragment and neutron \Rightarrow decay energy E_d

 $\mathsf{E}_d({}^{A+1}_Z X) \Leftrightarrow {\mbox{relative energy}}$ between fragment and neutron

$$E_{d}({}^{A+1}_{Z}X) = \sqrt{\left(E_{f} + E_{n}\right)^{2} - \left(\vec{p}_{f} + \vec{p}_{n}\right)^{2}c^{2}} - (M_{f} + M_{n})c^{2}$$

The unbound systems Moti	vations Expe	erimental approach		Conclusions and perspectives
0 00	00	•	000000	00

Experimental setup

fragment (CHARISSA) + neutron (DEMON)

Decay energy spectra

- ▶ fragment in its g.s.
- non-resonant continuum/ uncorrelated distribution (NC) : event mixing
- ► ⁷He g.s. : cross-check

	Result interpretation ○●○○○○○	

 10 Li : virtual s state + p resonance + NC

virtual s state: $a_s = -10^{+1}_{-3} [stat] (\pm 3 [syst]) \text{ fm}$ $\nu 1p_{1/2} - \nu 2s_{1/2}$ p resonance: $E_r = 0.55 \pm 0.02 (\pm 0.05) \text{ MeV}$ INVERSION : $\Gamma_0 = 0.35 \pm 0.05 (\pm 0.15) \text{ MeV}$ CONFIRMED

	Result interpretation	
	000000	

¹³Be : uncorrelated events, excited fragments

Rate of excited fragments (DEMON prompt γ)

Resolution, efficiency, Doppler effect are included

	Result interpretation	

Kondo et al.

 $\begin{array}{lll} s \text{ resonance} & : & E_r = 0.70 \pm 0.05 \, [stat] \, (\pm 0.07 \, [syst]) \, \, \text{MeV} \\ & \Gamma_0 = 1.7 \pm 0.1 \, (\pm 0.1) \, \, \text{MeV} \\ d \text{ resonance} & : & E_r = 2.4 \pm 0.1 \, (\pm 0.1) \, \, \text{MeV} \\ & \Gamma_0 = 0.6 \pm 0.2 \, (\pm 0.1) \, \, \text{MeV} \end{array}$

		Conclusions and perspectives
		•0

Conclusions

Unbound states populated via proton-knockout and fragmentation of ¹⁴B

$\boxed{10} \text{Li}: \nu 1 p_{1/2} - \nu 2 s_{1/2}$	51/2	inversion confirmed	
virtual <i>s</i> state	:	$a_s = -10^{+1}_{-3} [extsf{stat}] (\pm 3 [extsf{syst}]) \; extsf{fm}$	
p resonance	:	$E_r = 0.55 \pm 0.02 (\pm 0.05) \text{MeV} \ \Gamma_0 = 0.35 \pm 0.05 (\pm 0.15) \text{MeV}$	A A A A A A A A A A A A A A A A A A A

¹³ Be : indicati	ons o	of a $\nu 1d_{5/2} - \nu 2s_{1/2}$ inversion
s resonance	:	$E_r = 0.70 \pm 0.05 \text{ [stat]} (\pm 0.07 \text{ [syst]}) \text{ MeV}$ $\Gamma_0 = 1.7 \pm 0.1 (\pm 0.1) \text{ MeV}$
d resonance	:	$E_r = 2.4 \pm 0.1 (\pm 0.1)$ MeV $\Gamma_0 = 0.6 \pm 0.2 (\pm 0.1)$ MeV

0 1 2

 ${}^{3}\mathbf{E}_{d}^{4}(\mathbf{MeV})^{5}$

0 00	000	0000000	00

Perspectives

0	00	000	000000	00

Acknowledgements

LPC Caen: N.A. Orr, F.M. Marques, N.L. Achouri, F. Delaunay, J. Gibelin, M. Parlog, M. Senoville

DEMON Collaboration (ULB, IPHC, LLN):

F. Hanappe, A. Ninane, L. Stuttge et al.

CHARISSA Collaboration (Birmingham, Surrey, York): W.N. Catford, M. Freer *et al.*