

Maria Fisichella

Laboratori Nazionali del Sud – INFN Dipartimento di Fisica, Università di Messina

Fusion reactions and neutron transfer in collisions induced by Li isotopes on Sn and Zn targets

26-29/03/2012 Pisa

OUTLINE OF THE TALK

- 1. Introduction on reactions induced by weakly bound nuclei
- 2. ⁶Li + ¹²⁰Sn and ⁷Li + ¹¹⁹Sn fusion reactions
- 3. ⁶Li + ⁶⁴Zn and ⁷Li + ⁶⁴Zn fusion reactions
- 4. Summary, conclusions and future perspectives

COLLISIONS INDUCED BY WEAKLY BOUND NUCLEI

Weakly bound nuclei are characterized by

Some authors have predicted that coupling with breakup generates in CF cross section:

- 1. an **enhancement** at energies **below** the Coulomb barrier
- 2. a **reduction** at energies **above** the Coulomb barrier

BREAKUP AND FUSION

To study the effects of breakup on fusion

⁹Be (S_n =1.57 MeV) ⁶Li (S_a =1.48 MeV) ⁷Li (S_a =2.45 MeV)

on light, medium and heavy mass targets

Fusion evaporation reaction on:

✓ heavy targets → easy CF and ICF separation

✓ light and medium targets ⇒ difficult CF and ICF discrimination

Suppression of CF with respect to 1D BPM or experimental data concerning collisions induced by well bound nuclei on the same targets at energies above the barrier on heavy targets is a well establish effect

Complete Fusion Suppression factor (SF_{CF})

In ⁶Li-induced reactions SF is almost independent from Z of the target nucleus. The same cannot be said for ⁷Li and ⁹Be induced reactions

NEUTRON TRANSFER AND FUSION

Stefanini Phys.Rev.C 73 034606 (2006)

... BUT ...

In Sn+Ni and Te+Ni fusion reactions no sub-barrier fusion enhancement has been observed even in the presence of large Q-values for multineutron transfer

The sub-barrier enhancement in ⁴⁰Ca+⁹⁶Zr has been attributed to the presence of neutron transfer channels with large positive Q-values.

Kohley, PRL 107 202701 (2011)

FUSION REACTIONS IN COLLISIONS INDUCED BY Li ON Sn TARGETS

To investigate the role played by the coupling to direct channels at energies above and below the barrier, we proposed to study:

Reactions	Q (1n transfer)	Q (2n transfer)
⁶ Li + ¹²⁰ Sn	0.51 MeV	-12.3 MeV
⁷ Li + ¹¹⁹ Sn	1.858 MeV	2.36 MeV
⁸ Li + ¹¹⁸ Sn	4.451 MeV	6.3 MeV
⁹ Li+ ¹¹⁷ Sn	5.26 MeV	9.714 MeV

performed @LNS

to be performed @TRIUMF

✓ In these collisions it is possible to discriminate CF from ICF
 ✓ These reactions lead to the same compound nucleus
 and are characterized by different Q-values for neutron transfer

We wish to investigate:

- Above the barrier the complete fusion suppression in a target mass range never studied before
- Below the barrier the role played by the different n-transfer Q-values by comparing the fusion excitation functions for all the systems

ACTIVATION TECHNIQUE FOR FUSION CROSS SECTION MEASUREMENTS

The evaporation residues (E.R.)

cannot be directly identified BUT are unstable and decay by Electron Capture

To measure the fusion cross section we used an activation technique based on the off-line measurement of the atomic X-ray emission following the E.C.

"ON-LINE" TARGET ACTIVATION @ LNS

⁹³Nb catchers are used in order to stop the residues emerging from the target

> Energy range investigated: 16 MeV <E_{cm}< 24 MeV (V_b=19.2 MeV)

Beam intensity from Rutherford scattering

"OFF-LINE" CHARACTERISTIC X-RAY MEASUREMENTS

The radioactive E.R. that should be observed in both reaction are:

Complete Fusion: I

Incomplete Fusion: Sb

From the X-ray energies we can only identify different elements but not different isotopes

ACTIVITY CURVES

Different isotopes can be discriminated by following the X-ray activity as a function of time

⁶Li +¹²⁰Sn (E=25MeV)

⁷Li +¹¹⁹Sn (E=25 MeV)

From the fit of the activity curve, the experimental activity A_{Oexp} for each produced residue at the end of the irradiation is obtained

RELATIVE YIELDS OF EVAPORATION RESIDUES

By knowing:

⁷Li +¹¹⁹Sn

There is a good agreement between experimental data and CASCADE predictions

COMPLETE FUSION EXCITATION FUNCTION: PRELIMINARY RESULTS (I)

COMPLETE FUSION EXCITATION FUNCTION: PRELIMINARY RESULTS (II)

To investigate effects of transfer Q-values we should compare all the Li+Sn systems and perform CDCC calculation

Sub-barrier fusion enhancement in the ⁷Li induced collisions due to larger n-transfer Q value cannot be deduced from the present data

6,7Li + 64Zn FUSION REACTIONS @ LNS

Aim of the study:

investigate on possible effects on the sub-barrier fusion cross section due to :

✓ different structure ✓ different breakup threshold

⁶Li (a+d) $S_a = 1.4$ MeV no bound excited states ⁷Li (a+t) $S_a = 2.5 \text{ MeV}$ first excited state ~ 0.5MeV

We used the activation technique as in the case of Li+Sn ...

discrimination of the CF and ICF is not possible 🕈 Total fusion cross section

COMPARISON WITH GOMES et al. [1] ^{6,7}Li+⁶⁴Zn

[1] Phys. Rev. C 71 034608 (2005)

^{6,7}Li +⁶⁴Zn cross sections measured @ LNS are larger than the one previous measured

This result appears to confirm the presence of possible experimental problems suggested by Gomes [Phys.Rev.C 79 (2009) 027606]

RELATIVE YIELDS OF EVAPORATION RESIDUES: $^{6}Li+^{64}Zn (V_{b} \approx 13MeV)$

Above the Coulomb barrier complete fusion is the dominant process.

Below the barrier heavy residue production in the region is clearly dominated by d-ICF and n-transfer

⁶Li +⁶⁴Zn AND ⁷Li+⁶⁴Zn FUSION EXCITATION FUNCTION (I)

V_b and R_b are taken from *Canto et al., Nucl. Phys. A 821, 51 (2009)*

A clear enhancement of ⁶Li induced reaction with respect to the ⁷Li one is observed at energies below the Coulomb barrier

⁶Li +⁶⁴Zn AND ⁷Li+⁶⁴Zn FUSION EXCITATION FUNCTION (II)

Mandira Sinha et al. Eur.Phys.Jour. A 44,403 (2010)

The origin of this increasing trend has been studied within CDCC calculations for the ^{6,7}Li+⁵⁹Co [A. D.Torres et al., Phys. Rev. C 68, 044607 (2003)]: it has been attributed to the different breakup thresholds of ^{6,7}Li.

SUMMARY AND CONCLUSIONS

We performed fusion reactions induced by ⁶Li and ⁷Li to investigate the effects of breakup and neutron transfer on fusion process.

For Li+Sn reactions

- at energy above the barrier a suppression of CF excitation function with respect to 1D BPM was observed. The SF for the ⁶Li induced reaction is in agreement with the others reported in literature. The SF for the ⁷li+¹¹⁹Sn is lower than those extracted from reactions on heavier targets.
- at energies below the barrier, only from the comparison of the two system nothing could concluded about the possible influence of n-transfer Q-value.

In the future we would like to

- extend these measurements to lower energies.
- perform the ⁸Li+¹¹⁸Sn ⁹Li+¹¹⁷Sn experiments and compare the four fusion excitation functions.
- do CDCC calculations to take into account the coupling with breakup.

For the ^{6,7}Li+⁶⁴Zn reactions

- the comparison with CASCADE code has shown that direct reactions play an important role at sub-barrier energies
- a large sub-barrier enhancement of fusion excitation function in the case the 6li+64Zn with respect to 7Li+64Zn.

As next step we will perform CDCC calculations to understand the origin of this enhancement

COLLABORATION

A. Di Pietro¹ P. Figuera¹, M, Fisichella^{1,2} M. Lattuada^{1,3},
C. Maiolino¹, C.Marchetta¹, M.Milin⁴, A.Musumarra^{1,3}, V. Ostashko⁵,
M.G. Pellegriti^{1,3}, C.Ruiz⁶, D. Santonocito¹, V. Scuderi^{1,3}, A. Shotter^{6,7}, E.Strano^{1,3},
D.Torresi^{1,3}, M.Zadro⁸

¹INFN- Laboratori Nazionali del Sud and sezione di Catania, Catania, Italy ²Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy ³partimento di Fisica, Università di Messina, Messina, Italy ⁴Department of Physics Faculty of Science University of Zagreb, Zagreb, Croatia ⁵KINR, Kiev, Ukraine ⁶TRIUMF, Vancouver, Canada ⁷School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK

⁸Division of Experimental Physics Ruder Boŝković Institute, Zagreb, Croatia