Correlations in direct two-proton knockout and details of the reaction mechanism

Kathrin Wimmer
NSCL - Michigan State University

March 282012

■ fast ($\approx 100 \mathrm{MeV} / \mathrm{u}$) beam interacts with light target (typically ${ }^{9} \mathrm{Be}$ or ${ }^{12} \mathrm{C}$)

- peripheral collision removes one nucleon

■ target and removed nucleon usually not detected

- momentum conservation: measure momentum of residue $\rightarrow \Delta L$
- measure cross section
\rightarrow spectroscopic factors

$$
\sigma_{\exp }\left(J^{\pi}\right)=S \cdot \sigma_{\mathrm{sp}}(n l j)
$$

two processes contribute to the knockout reaction

■ diffractive or elastic breakup

- dissociation through two-body interaction with target (elastic)
- forward direction with beam velocity
- target remains in the ground state
- stripping or inelastic breakup

- removed nucleon reacts with target
- excites the target
- loses energy or picks up nucleons from the target

■ stripping typically dominant
■ calculate both processes \rightarrow incoherent sum compared to experiment
\square detection of light particles in coincidence with heavy residue
\square deuterons, tritons etc. \rightarrow stripping

- protons both elastic and inelastic interaction with the target

D. Bazin et al., Phys. Rev. Lett. 102 (2009) 232501
- energy conservation: $E_{\mathrm{p}}+E_{\mathrm{r}}=E_{\text {beam }}$
- diffraction: sharp peak in summed energy
proton angular distribution from diffraction events

comparison with continuum discretized coupled channels (CDCC) calculations

Proj.	$\sigma_{\text {inc }}[\mathrm{mb}]$	$\sigma_{\text {diff }}[\mathrm{mb}]$	$\%_{\text {diff }}$	$\sigma_{\text {inc }}^{\text {th }}[\mathrm{mb}]$	$\sigma_{\text {diff }}^{\text {th }}[\mathrm{mb}]$	$\%_{\text {diff }}^{\text {th }}$	R_{S}
${ }^{9} \mathrm{C}$	$56(3)$	$13.8(6)$	$25(2)$	62.9	15.0	26.8	$0.84(5)$
${ }^{8} \mathrm{~B}$	$127(5)$	$49(2)$	$38(3)$	144.3	47.1	37.1	$0.88(4)$

observed stripping and diffraction contributions are in very good agreement with eikonal model
D. Bazin et al., Phys. Rev. Lett. 102 (2009) 232501

Two-proton knockout reactions from neutron-rich nuclei

- give access to even more exotic nuclei
- are direct reactions

- can be used to determine angular momenta
E. C. Simpson et al., Phys. Rev. Lett. 102132502
- however, more complicated reaction mechanism
\rightarrow the cross section has three components:

$$
\sigma=\sigma_{\mathrm{dif}^{2}}+\sigma_{\mathrm{str}-\mathrm{dif}}+\sigma_{\mathrm{str}^{2}}
$$

D. Santiago-Gonzalez et al.,

Phys. Rev. C 83 061305(R)
two-proton knockout from a neutron-rich beam ${ }^{9} \mathrm{Be}\left({ }^{28} \mathrm{Mg},{ }^{26} \mathrm{Ne}+\mathrm{X}\right) \mathrm{Y}$
■ simple structure, proton sd and semi-magic $N=16$ nuclei

- intense ${ }^{28} \mathrm{Mg}$ beam available at NSCL

■ cross sections known from previous ${ }^{26} \mathrm{Ne}-\gamma$ coincidence experiment

$$
\sigma^{\mathrm{inc}}=1.50(10) \mathrm{mb}
$$

- now: first study of the reaction mechanism
$■ \rightarrow$ need to measure protons in coincidence with residue nucleus
■ prediction $\sigma_{\text {dif }^{2}}=90 \mu \mathrm{~b}$

The S800 spectrograph

charge particle detector array based on $\Delta E-E$ measurement

- up to 20 telescopes
- many possible configurations

■ angular coverage $\vartheta=9-54^{\circ}$

M.S. Wallace et al, NIMA 583302

- two-proton knockout from ${ }^{28} \mathrm{Mg}$
- need to identify all reaction partners

■ measure their energies and momenta
■ $\sigma^{\text {inc }}=1.475(18) \mathrm{mb}$

- previous measurement:
$\sigma^{\text {inc }}=1.50(10) \mathrm{mb}$
D. Bazin et al., Phys. Rev. Lett. 91012501

S800 spectrograph reaction residue, energy loss and TOF

incoming beam, time-of-flight \rightarrow velocity

light charged particles in HiRA

■ cross section for triple coincidences $\sigma_{o b s}^{\text {tot }}=0.88(2) \mathrm{mb}$

- this has to be corrected for the acceptance of HiRA
$\sigma_{\mathrm{extr}}=k_{1} \cdot k_{2} \cdot \sigma_{\mathrm{obs}}$

$\square \sigma_{\text {extr }}^{\text {tot }}=1.43(5) \mathrm{mb}$
■ in agreement with the inclusive cross section $\sigma^{\mathrm{inc}}=1.475(18) \mathrm{mb}$
■ for every knockout event two light charged particles in the exit channel
${ }^{26} \mathrm{Ne}+\mathrm{p}+\mathrm{p}$ triple coincidences
- all three processes contribute how to disentangle?
- for diffraction we expect
$M_{\text {miss }}=M\left({ }^{9} \mathrm{Be}\right)=8.395 \mathrm{GeV} / \mathrm{c}^{2}$
- for reactions involving strinping
$M_{\text {miss }}>M\left({ }^{9} \mathrm{Be}\right)$
for each event calculate the missing mass $M_{\text {miss }}$:

$$
\begin{aligned}
M_{\text {miss }}^{2} & =\left(\sum P_{\mathrm{in}}-\sum P_{\text {out }}\right)^{2} \\
& =\left(\sum E_{\mathrm{in}}-\sum E_{\text {out }}\right)^{2}-\left(\sum \vec{p}_{\mathrm{in}}-\sum \vec{p}_{\text {out }}\right)^{2}
\end{aligned}
$$

- free two component fit (two Gaussians) gives peak at 8.399(3) GeV/c²
- width in agreement with resolutions
${ }^{26} \mathrm{Ne}+\mathrm{p}+\mathrm{p}$ triple coincidences
- all three processes contribute how to disentangle?
- for diffraction we expect

$$
M_{\text {miss }}=M\left({ }^{9} \mathrm{Be}\right)=8.395 \mathrm{GeV} / \mathrm{c}^{2}
$$

■ for reactions involving stripping

$$
M_{\text {miss }}>M\left({ }^{9} \mathrm{Be}\right)
$$

for each event calculate the missing mass $M_{\text {miss }}$:

$$
\begin{aligned}
M_{\text {miss }}^{2} & =\left(\sum P_{\mathrm{in}}-\sum P_{\text {out }}\right)^{2} \\
& =\left(\sum E_{\text {in }}-\sum E_{\text {out }}\right)^{2}-\left(\sum \vec{p}_{\text {in }}-\sum \vec{p}_{\text {out }}\right)^{2}
\end{aligned}
$$

- free two component fit (two Gaussians) gives peak at 8.399(3) GeV/c²
- width in agreement with resolutions
${ }^{26} \mathrm{Ne}+\mathrm{p}+\mathrm{p}$ triple coincidences
- all three processes contribute how to disentangle?
■ for diffraction we expect

$$
M_{\text {miss }}=M\left({ }^{9} \mathrm{Be}\right)=8.395 \mathrm{GeV} / \mathrm{c}^{2}
$$

■ for reactions involving stripping

$$
M_{\text {miss }}>M\left({ }^{9} \mathrm{Be}\right)
$$

for each event calculate the missing mass $M_{\text {miss }}$:

$$
\begin{aligned}
M_{\text {miss }}^{2} & =\left(\sum P_{\text {in }}-\sum P_{\text {out }}\right)^{2} \\
& =\left(\sum E_{\text {in }}-\sum E_{\text {out }}\right)^{2}-\left(\sum \vec{p}_{\text {in }}-\sum \vec{p}_{\text {out }}\right)^{2}
\end{aligned}
$$

■ free two component fit (two Gaussians) gives peak at 8.399 (3) $\mathrm{GeV} / \mathrm{c}^{2}$
■ width in agreement with resolutions

- diffraction cross section: $\sigma_{\mathrm{obs}}^{\text {diff }}=0.07(2) \mathrm{mb}$

- relative diffraction yield as a function of proton energy
- $E_{\mathrm{p}_{2}}$: smaller of the two proton energies
- almost only diffraction if both protons have large energies
\square diffraction cross section: $\sigma_{o b s}^{\text {diff }}=0.07(2) \mathrm{mb}$
■ how to determine diffraction-stripping and stripping?
■ events where one particle is a proton, the other one not a proton so a deuteron, triton, etc.

■ additional neutrons can only come from the target

$$
\sigma_{\text {diff-str }} / \sigma_{\text {str }}=0.7(2)
$$

■ both detected particles are not protons \rightarrow this can only be stripping

	diff	diff-str	str	tot.
$\sigma_{\text {extr }}[\mathrm{mb}]$	$0.11(3)$	$0.44(23)$	$0.87(23)$	$1.43(5)$
fraction [\%]	$8(2)$	$31(16)$	$61(16)$	
$\sigma_{\text {theo }} \cdot R_{\mathrm{S}}(2 \mathrm{~N})[\mathrm{mb}]$	0.09	0.55	0.83	1.475
fraction $_{\text {theo }}[\%]$	6.3	37.4	56.3	

■ good agreement for relative contributions of the reaction processes
K. Wimmer et al., subm.
two-proton knockout: a valuable tool to study exotic nuclei

- 3-body decay

- correlated proton pair (di-proton mode)

- two step process through ${ }^{27} \mathrm{Na}$ (excluded by separation energy)

Three-particle phase space simulations:
■ using the decay energy as input
■ including all experimental resolutions and acceptance limitations

$$
E_{\mathrm{dec}}=\sqrt{\left(\sum P_{\mathrm{i}}\right)^{2}}-\sum m_{\mathrm{i}}
$$

two-proton relative energy:

■ correlated proton pair breakup fraction: 0.56(14)

■ normalized invariant mass

$$
W_{i j}^{2}=\frac{M_{i j}^{2}-\left(m_{i}+m_{j}\right)^{2}}{\left(E_{\mathrm{dec}}+m_{i}+m_{j}\right)^{2}-\left(m_{i}+m_{j}\right)^{2}}
$$

+ data
— three-body
—di-proton
- $\mathbf{f i t}$

- fit with two components three-body and di-proton model
- results:
$0.56(7)$ for $W_{\text {pp }}$ projection $0.55(20)$ for $W_{\text {cp }}$ projection
- in agreement with $E_{\text {rel }}$

+ data
— three-body
—di-proton
- fit
- no intermediate ${ }^{27} \mathrm{Na}$ found
- significant correlation of the two protons
- small relative momentum

■ \rightarrow surface localization and spacial proximity

- two-nucleon joint position probabilities in the impact parameter plane: $P\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)$ integrated over $z_{1,2}(z=$ beam axis $)$
- proton $1 \mathbf{s}_{1}$ at the surface
- $S=0$ enhances spacial correlation

■ 64% of the inclusive cross section $S=0$

- 56(7) \% correlated proton pair fraction measured
$S=0$ should have a more narrow momentum distribution:

J_{f}	$S=0[\%]$
0^{+}	90
2_{1}^{+}	22
4^{+}	49
2_{2}^{+}	54
Incl.	64

we need final state exclusive measurements to confirm this
detailed study of the two-proton knockout reaction at NSCL
■ first exclusive measurement of diffractive and stripping components for two-particle knockout

- fractional cross sections of the individual components in agreement with theory
\rightarrow use for spectroscopy of exotic nuclei
observation of correlated proton pairs
- removal of a $S=0$ pair
- correlations in the entrance channel
\rightarrow final state exclusive measurements
neutron- γ-residue coincidence experiment planned
D. Bazin, A. Gade, E.C. Simpson, J.A. Tostevin, T. Baugher, Z. Chajecki, D. Coupland, M.A. Famiano, T.K. Ghosh, G.F. Grinyer, R. Hodges, M.E. Howard, M. Kilburn, W.G. Lynch, B. Manning, K. Meierbachtol, P. Quarterman, A. Ratkiewicz, A. Sanetullaev, S.R. Stroberg, M.B. Tsang, D. Weisshaar, J. Winkelbauer, R. Winkler, and M. Youngs

National Superconducting Cyclotron Laboratory, Michigan State University
Department of Physics and Astronomy, Michigan State University
Department of Physics, University of Surrey
Department of Physics, Western Michigan University Variable Energy Cyclotron Centre
Department of Physics and Astronomy, Rutgers University
Department of Chemistry, Michigan State University

Funded by
NSF, DOE, and UK-STFC

Thank you for your attention

Backup

One-proton knockout

missing mass in high-resolution one-proton knockout:

■ thin target

- high resolution mode

■ this is not possible for the two-proton knockout

- no separation of reaction dynamics and structure anymore
- transition amplitudes for total angular momentum J coherent sum of many pair contributions
- three contributions to the cross section

$$
\sigma=\sigma_{\mathrm{str}^{2}}+\sigma_{\mathrm{str}-\mathrm{dif}}+\sigma_{\mathrm{dif}^{2}}
$$

- both stripped

$$
\sigma_{\mathrm{str}^{2}}=\frac{1}{2 J_{i}+1} \sum_{M_{i}} \int \mathrm{~d} \vec{b}\left\langle\psi_{J_{i} M_{i}}\right|\left|S_{\mathrm{r}}\right|^{2}\left(1-\left|S_{1}\right|^{2}\right)\left(1-\left|S_{2}\right|^{2}\right)\left|\psi_{J_{i} M_{i}}\right\rangle
$$

- one diffracted, one stripped $\sigma_{\text {str-dif }}=\sigma_{1}^{\text {dif }}+\sigma_{2}^{\text {dif }}$

$$
\sigma_{1}^{\text {dif }}=\frac{1}{2 J_{i}+1} \sum_{M_{i}} \int \mathrm{~d} \vec{b}\left\langle\psi_{J_{i} M_{i}}\right|\left|S_{r}\right|^{2}\left|S_{1}\right|^{2}\left(1-\left|S_{2}\right|^{2}\right)\left|\psi_{J_{i} M_{i}}\right\rangle
$$

- both diffracted, only estimate:

$$
\sigma_{\mathrm{dif}^{2}}=\left[\frac{\sigma_{1}^{\mathrm{dif}}}{\sigma_{\mathrm{str}^{2}}}\right]^{2} \cdot \sigma_{\mathrm{str}^{2}}
$$

J. A. Tostevin and B. A. Brown, Phys. Rev. C 74 (2006) 064604

