

Outline

Introduction

fusion with neutron-rich radioactive nuclei

Experiment

Fusion enhancement and nucleon transfer

¹³²Sn+^{40,48}Ca ¹³²Sn+^{58,64}Ni ^{46,50}Ti+¹²⁴Sn

Outlook and Summary

Introduction

- The heaviest elements are synthesized in laboratories by fusion reactions.
- expected fusion enhancement with neutron-rich radioactive nuclei larger r.m.s. radii (skin, halo) collective modes (soft-dipole resonance) exotic shapes neutron transfer etc.
- Neutron-rich radioactive beams may be used for producing neutron-rich isotopes of superheavy element.
- These beams may help reach the predicted N=184 neutron shell closure.
- Nuclear fusion provides power to stars.
- Fusion is predicted to be a heat source in the crust of neutron stars.

Loveland, PRC76(2007)014612 Horowitz, PRC77(2008)045807

Introduction

- tunneling
- Sub-barrier fusion enhancement
- •coupling of the intrinsic degrees of freedom to the relative motion
- estatic deformation, surface vibration, nucleon transfer, and so on

Introduction

neutron transfer

System	+1n	+2n	+3n	+4n	+5n	+6n
$^{40}\text{Ca} + ^{90}\text{Zr}$	-3.61	-1.44	-5.86	-4.17	-9.65	-9.05
40 Ca $+^{94}$ Zr	+0.14	+4.89	+4.19	+8.12	+3.57	+4.65
40 Ca $+^{96}$ Zr	+0.51	+5.53	+5.24	+9.64	+8.42	+11.62
⁴⁸ Ca+ ⁹⁰ Zr	-6.82	-9.79	-17.73	-22.67	-31.93	-37.60
$^{48}\text{Ca} + ^{96}\text{Zr}$	-2.71	-2.82	-6.63	-8.69	-13.87	-17.00

- Sub-barrier fusion enhancement correlates with +Q-values for transfer.
- •The barrier distributions for ⁴⁰Ca+^{94,96}Zr have a low energy tail.
- N-rich radioactive nuclei induced fusion

HRIBF Beams

- **ISOL**
- •238UC(p,FF)
- Isobar purification by selecting SnS
- Cs vapor charge exchange cell to obtain negative ions
- maximum intensity on target ~ 200k ¹³²Sn/s

http://www.phy.ornl.gov/hribf/

Apparatus

time-of-flight

- Experiments used Ca and Ni targets
- •Inverse kinematics (heavy projectile on light target)
- Reaction products forward focusing
- •Detecting ER and beam in the IC simultaneously at 0°
- •ER identification by time-of-flight and E-ΔE
- Detecting FF by an annular double-sided Si strip detector
- thick targets to compensate for the low intensity beams

Results: Sn+Ca

$$R_o = A_p^{1/3} + A_t^{1/3}$$

 $B_o = Z_p Z_t / R_o$

- •Compare reduced excitation functions to remove differences in nuclear size and barrier height.
- •enhancement from inelastic excitations of projectile and target w.r.t. the no coupling calculations
- •The enhancement for reactions with ⁴⁰Ca is larger than that with ⁴⁸Ca because of the 3⁻ state in ⁴⁰Ca.
- •The enhancement for reactions with ¹³²Sn is smaller than that with ¹²⁴Sn because ¹³²Sn is doubly magic and less collective.

Results: Sn+Ca

- ●The Q-value for transfer is negative in reactions with ⁴⁸Ca. •comparison similar to ⁴⁰Ca+^{90,96}Zr
- •suggests enhancement due to inelastic excitations and transfer in reactions with ⁴⁰Ca

108

112

Results: Sn+Ni

- ●The magnitude of sub-barrier enhancement in ¹³²Sn+⁵⁸Ni resembles that in other Sn+Ni. (no isotope dependence)
- •The influence of neutron transfer is not as pronounced as in Sn+40Ca.

Results: Te+Ni

a similar behavior for the comparison of ¹³⁰Te+^{58,64}Ni

Results: Sn+Ni

- ●The magnitude of sub-barrier enhancement in ¹³²Sn+⁵⁸Ni resembles that in other Sn+Ni. (no isotope dependence)
- ●The influence of neutron transfer is not as pronounced as in Sn+⁴⁰Ca.

Comparisons of Sn+⁴⁰Ca and Sn+⁵⁸Ni

Sn+Ca: $Z_{n}Z_{t} = 1000$

Sn+Ni: $Z_n Z_t = 1400$, deep inelastic collisions?

measure fusion excitation functions for $^{124}Sn+^{46,50}Ti$ $Z_{p}Z_{t} = 1100$

Coupled-Channels Analysis

	~	⁴⁰ Ca	- 1-
\mathbf{E}_{3}^{-}	5.006	3.737	4.475
β_3 -	0.40	0.43	0.19

- ●The peak position of the low energy barrier originated from coupling to the excitation of the 3⁻ state of Ca is much lower than that of Ni.
- ●The barrier resulted from coupling to transfer overlaps with that from coupling to the excitation of the 3⁻ state of Ca.
- ■The role of coupling to high-lying 3⁻ states

Fusion of 46,50Ti+124Sn

Compare 46,50Ti+124Sn with 40Ca+124Sn (Legnaro)

Fusion of 46,50Ti+124Sn

Comparison of the barrier distributions for ⁴⁰Ca+¹²⁴Sn (Legnaro) with ⁴⁶Ti+¹²⁴Sn

- Compare barrier distributions calculated by coupled-cahhnels
- Measure neutron transfer for ⁴⁶Ti+¹²⁴Sn

Summary

- •Fusion excitation functions have been measured using neutron-rich radioactive Sn and Te on Ca and Ni targets.
- •A large sub-barrier fusion enhancement has been observed in reactions with ⁴⁰Ca.
- **•**Comparing to the fusion with ⁴⁸Ca, the enhancement in ⁴⁰Ca can be attributed to neutron transfer.
- ●The Q-values for multineutron transfer in ¹³²Sn+⁵⁸Ni are comparable to those in ¹³²Sn+⁴⁰Ca but the enhancement is smaller.
- Data analysis is in progress for the high precision measurement of fusion excitation function for ¹²⁴Sn+⁴⁶Ti to deduce the barrier distribution.

Collaborators

CJ Gross, Z Kohley, D Shapira, RL Varner, JM Allmond, K Lagergren, PE Mueller – ORNL

JJ Kolata, A Howard, A Roberts, A Villano – University of Notre Dame

AL Caraley – SUNY at Oswego

W Loveland – Oregon State University

M Dasgupta, DJ Hinde, E Williams, ML Brown, IP Carter, M Evers,

DH Luong, A Wakhle – Australian National University

