DREB 2012 Direct Reactions with Exotic Beams 26-29 March 2012 Angular-momentum content of momentum profile in a neutron knockout from ¹⁴Be.

L. V. Chulkov LAND-ALADIN collaboration

This talk is devoted to a novel experimental method using momentum profile of ¹³Be in a neutron knockout from ¹⁴Be for studies the ¹³Be structure.

Puzzling structures of neutron-rich berylliums require

Introduction

 ^{12}Be is well bound and is a good core for ^{13}Be $S_n = 3.7 \ MeV$ $S_{2n} = 3.2 \ MeV$

Situation is complex: neutron-rich berylliums are essentially the few-body systems.

¹²Be 0⁺ ground state F.C.Barker, J.Phys.G 2(1976)L45 T=2 states of A=12 nuclei. Disappearance of N=8 magicity 1976

$${}^{12}Be(g.s.) = \alpha \left[{}^{10}Be \otimes (1s_{1/2})^2 \right] + \beta \left[{}^{10}Be \otimes (0p_{1/2})^2 \right] + \gamma \left[{}^{10}Be \otimes (0d_{5/2})^2 \right]$$
$${}^{13}Be {}^{1/2^+} state$$

$${}^{13}Be(1/2^+) = \zeta \left[{}^{10}Be \otimes (0p_{1/2})^2 \otimes (1s_{1/2}) \right] + \eta \left[{}^{10}Be \otimes (0d_{5/2})^2 \otimes (1s_{1/2}) \right]$$

$${}^{\alpha^2} \qquad {}^{\beta^2} \qquad {}^{\gamma^2} \qquad S$$

Few-body system \rightarrow s-wave resonance can exist.

$$S = (\beta \zeta + \gamma \eta)^2$$

H.Fortune +, Phys.Rev. C 0.53 0.32 0.15 < 0.4774(2006)024301 C.Romero +, Phys.Rev. C 0.67-0.76 0.13-0.19 0.10-0.13 < 0.32 77(2008)054313 F.Barker, J.Phys. G 0.35 0.31 0.34 < 0.69 36(2009) 038001 0.38* 0.32* 0.30 < 0.62 A.Navin +, Phys.Rev.Lett., 85(2000)266

(*) numerical data are taken from F.Barker J.Phys. G 36(2009)038001.

s-wave resonances

illustrated by the $\frac{1}{2}^+$ state in ⁹Be

The description of this unbound level is a long-standing problem. Despite the sizable amount of data, there still exist considerable uncertainties of the resonance parameters. O.Burda et al., Phys.Rev. C 82, 015808 (2010)
F.Barker, Phys.Rev. C 68, 054602 (2003) Aust. J. Phys. 53, 247 (2000).
V.Efros et al., Eur.Phys.J. A 4, 33 (1999)
E.Garrido et al., Phys.Rev.Lett. B 684, 132 (2010)

S-wave resonance or virtual state?

a = -27.6 fm; $r_0 = 8.8$ fm \rightarrow Efros + $E_s = -27 \text{ keV}$ $E_r = 19 \text{ keV}, \quad \Gamma = 217 \text{ keV} \rightarrow \text{Kuechler} +$ $E_s = -0.62 \text{ keV}$ $E_r = 67.6 \text{ keV}, \quad \Gamma = 280 \text{ keV} \rightarrow \text{Barker}$ $E_s = -23 \text{ keV}$ $E_r = 83(6) \text{ keV}, \quad \Gamma = 274(10) \text{ keV} \rightarrow \text{Burda} +$ $E_s = -30 - i 77 \text{ keV}$

 ${}^{9}\text{Be}(\gamma, n){}^{8}\text{Be}$ cross section as a function of E_{γ} Kuechler et al., Z. Phys. A 326, 447 (1987).

Situation is complex: ghosts in the ¹²Be+n relative-energy spectrum

¹³Be puzzle

Virtual state as a dominant

 $a_s = -3.2(1.0)$ fm (antibound state) Er = 0.41(8) MeV, $\Gamma = 0.4(5)$ MeV Er = 3.04 MeV, $\Gamma = 0.4$ MeV Er = 2.0 MeV, $\Gamma = 0.3$ MeV H.Simon et al., Nucl.Phys. A791, 267 (2007) Three recent experiments resulted to similar spectra but also to vastly different interpretations

Narrow p-wave resonance

 $a_s = -3.4(6)$ fm (antibound state) Er = 0.51(1) MeV, $\Gamma = 0.45(3)$ MeV Er = 2.39(5) MeV, $\Gamma = 2.4(2)$ MeV $\Gamma = 2.5$ Γ_{sp} ! Y.Kondo et al., Phys.Lett. B 690, 245 (2010)

Broad s-wave resonance.

 E_r =0.7(2) MeV, Γ=1.7(2) MeV E_r =2.4(2) MeV, Γ=0.6(3) MeV G.Randisi, PhD Thesis 2012, see also J.L.Lecouey, Few-Body Systems 34, 21 (2004).

Reaction Dependence of Nuclear Decay Widths

Various reactions have been used to study the reaction dependence of a resonance decay width The resonance widths are self-consistent and indicate little if any reaction dependence.

D.Overway et al., Nucl.Phys. A366, 299 (1981) N.Arena et al., Il Nuovo Cimento, A106, 1007(1993)

E_{n-12Be}, MeV

A.Bohr & B.R.Mottelson, Nuclear structure, 1998, v.1, p.441, Eq.3f-51

Shapes of momentum distributions cannot remove ambiguity

Yosuke Kondo Doctoral Dissertation 2007 ¹H(¹⁴Be, ¹²Be+n), E=69 MeV/u

s-p- d-

H.Simon at al., Nucl.Phys. A791, 267 (2007) C(¹⁴Be, ¹²Be+n), E=287 MeV/u Our aim is in finding free from contradiction interpretation of existing experimental data on ¹³Be

New observable – momentum profilewidth of ¹²Be+n momentum distribution as a function of ¹²Be+n relative energy in a neutron knockout from ¹⁴Be.

Step aside....

Our aim is in finding free from contradiction interpretation of existing experimental data

The ground state (dotted) and two d states (dot-dashed and dashed).

The spectrum is fitted with a single virtual *s*-state.

C.C.Hall +, Phys.Rev. C 81, 021302 (2010) Yu.Aksyutina +, Phys.Lett. B 666, 430 (2008)

Experimental set up

⁸He 240 MeV/u ¹¹Li 280 MeV/u ¹⁴Be 304 MeV/u Liquid hydrogen target

Momentum width as a function of *fragment-n* relative energy Momentum Profile: ⁷He & ¹⁰Li

P.G. Hansen, PRL 77 (1996) 1016 M. Smedberg, Thesis Chalmers University of Technology

Momentum Profile: $13Be \rightarrow 12Be(g.s.)+n$

Breit-Wigner *l***=0 resonance**

Interference with potential scattering (background phase shift)

$$\frac{d\sigma}{dE} \sim \frac{1}{k} (\sin(\delta_0 + \varphi_0))^2 = \frac{(\Gamma \cos(\varphi_0) + 2(E_r - E)\sin(\varphi_0))^2}{4k((E_r - E)^2 + \frac{\Gamma^2}{4})}$$

Momentum Profile: ${}^{13}Be \rightarrow {}^{12}Be(g.s.)+n$

Momentum Profile: ${}^{13}\text{Be} \rightarrow {}^{12}\text{Be}(g.s.)+n$

